| Sem:V                               | Total Hours Distribution per week |                                                       |                 |  |             |  |  |
|-------------------------------------|-----------------------------------|-------------------------------------------------------|-----------------|--|-------------|--|--|
| Total Credit: 03                    | Lecture (L): 3 Hrs                | Tutorial/Activity (T/A): 0 Hrs. Practical (P): 0 Hrs. |                 |  |             |  |  |
| Subject Code                        | BTCVE501T                         | Name of Subject: Hydraulics Engineering               |                 |  |             |  |  |
|                                     | Examination Scheme                |                                                       |                 |  |             |  |  |
| Internal Marks:                     |                                   | University Marks:                                     | Minimum Passing |  | Examination |  |  |
|                                     |                                   |                                                       | Marks:          |  | Duration:   |  |  |
| 30                                  | Marks                             |                                                       |                 |  |             |  |  |
| (15marks for sessional Examination) |                                   | 70 Marks                                              | 45 Marks        |  | 3 Hours     |  |  |
| (15 Marks fo                        | or Activity based)                |                                                       |                 |  |             |  |  |

| Cou | rse Objective                                                                             |
|-----|-------------------------------------------------------------------------------------------|
| 1   | To know the boundary layer theory and concept of drag and lift                            |
| 2   | To understand the various losses occurring in pipe flow, various phenomenon occurring in  |
|     | this case                                                                                 |
| 3   | To compute uniform flow through open channel and understand the concept of specific       |
|     | energy                                                                                    |
| 4   | To analyse the gradual varied flow and hydraulic jump concept                             |
| 5   | To understand the design principle of various hydraulic machines likes turbines and pumps |

| Cour  | Course Outcome                                                                                                                                                   |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| After | completion of syllabus student able to                                                                                                                           |  |  |  |  |  |
| 1     | Understand the concepts related to boundary layer theory and determination of drag<br>and lift forces                                                            |  |  |  |  |  |
| 2     | Apply the knowledge of theories and equations of pipe flow in analyzing and designing the pipe network systems and to discuss effects of water hammer pressures. |  |  |  |  |  |
| 3     | Use the concepts of uniform and critical flow through open channels, design of efficient channel sections and application of specific energy concept.            |  |  |  |  |  |
| 4     | Understand gradually varied flow analysis and its computation, and its application in open channel flow.                                                         |  |  |  |  |  |
| 5     | Understand and apply basics principles related to turbines & Pumps in water Resources planning                                                                   |  |  |  |  |  |

| CO/PO         | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 | PO11 | PO |
|---------------|------------|-----|-----|-----|-----|------------|------------|-----|------------|------|------|----|
| BECVE501T CO1 | 3          | 3   | 3   |     |     | 2          |            |     |            |      |      |    |
| BECVE501T CO2 | 3          | 3   | 3   |     | 2   | 2          |            |     |            |      |      |    |
| BECVE501T CO3 | 3          | 3   | 3   |     | 2   | 2          |            |     |            |      |      |    |
| BECVE501T CO4 | 3          | 3   | 3   | 3   | 2   | 2          |            |     |            |      |      |    |
| BECVE501T CO5 | 3          | 3   | 3   | 3   | 2   | 2          | 1          | 1   |            |      |      |    |

## 1 Low 2 Medium

3 High

| Unit No.1                                                               |                          |       |                             |
|-------------------------------------------------------------------------|--------------------------|-------|-----------------------------|
| Real Fluid Flow:                                                        | Allotment<br>of<br>Hours |       | Mapped<br>with CO<br>Number |
|                                                                         | L                        | T/A   | СО                          |
| Viscous Flow: Reynold's experiment, viscous flow through a circular     | 02                       |       | 1                           |
| pipe, velocity and shear stress distribution, Hazen poisuillee equation |                          |       |                             |
| Boundary layer concept: Nominal thickness, displacement thickness,      | 03                       |       | 1                           |
| momentumthickness of the boundary layer: Boundary layer along a thin    |                          |       |                             |
| plate and its characteristics; Laminar boundary layer; turbulent        |                          |       |                             |
| boundary layer; laminar sub-layer: separation of boundary layer on      |                          |       |                             |
| plane and curved surfaces.                                              |                          |       |                             |
| Real, Incompressible Fluid Flow Around Immersed Bodies:                 | 03                       |       | 1                           |
| General definition of drag and lift; flowpast plates, cylinders and     |                          |       |                             |
| spheres; drag on sphere; drag on sphere, cylinder and flat plate        |                          |       |                             |
|                                                                         | 08                       |       |                             |
| Unit No.2                                                               |                          |       |                             |
|                                                                         | Allo                     | tment | Mapped                      |
| Flow through Pipes:                                                     | of                       |       | with CC                     |
|                                                                         | Hou                      |       | Number                      |
|                                                                         | L                        | T/A   | CO 2                        |
| Hydraulically smooth and rough pipes: Frictional resistance to flow of  | 07                       |       | 2                           |
| fluid in smooth and rough pipes; Moody's chart; Darcy-Weisbach &        |                          |       |                             |
| Hazen-William's equation for frictional head loss; Hydraulic gradient   |                          |       |                             |

| and energy gradient: Pipes in series and parallel; Branched pipes;    |         |       |         |
|-----------------------------------------------------------------------|---------|-------|---------|
| Siphon; transmission of power through pipes; Hardy-Cross methods of   |         |       |         |
| pipe networks; Water-hammer, pressure head due to sudden closure of   |         |       |         |
| valve.                                                                |         |       |         |
|                                                                       | 07      |       |         |
| Unit No.3                                                             |         |       |         |
|                                                                       | Allo    | tment | Mapped  |
|                                                                       | of      |       | with CO |
| Uniform Flow Through Open Channels                                    | Hou     | rs    | Number  |
|                                                                       | L       | T/A   | СО      |
| (A)General: Types of channel and their geometrical properties;        | 03      |       | 3       |
| Types of flow in open channel.                                        |         |       |         |
| (B) Uniform Flow: Chezy's and Manning's equations;                    | 03      |       | 3       |
| Hydraulically most efficient rectangular, triangular and              |         |       |         |
| trapezoidal sections; Computations of normal depth of flow,           |         |       |         |
| conveyance of channel, section factor for uniform flow, normal        |         |       |         |
| slope and normal discharge.                                           |         |       |         |
| (C) Critical Flow: Specific energy and its diagram; alternate depths; | 02      |       | 3       |
| Computations of critical depth, section factor for critical flow,     |         |       |         |
| critical slope; normal, critical slope, Specific force and its        |         |       |         |
| diagram; Conditions of critical flow.                                 |         |       |         |
|                                                                       | 08      |       |         |
|                                                                       |         |       |         |
| Unit No.4                                                             |         |       |         |
|                                                                       | Allo    | tment | Mapped  |
| Non Uniform Flow through Open Channel                                 | of      |       | with CO |
|                                                                       | Hou     |       | Number  |
| (A) Gradually Varied Flow: Dynamic equation for GVF;                  | L<br>02 | T/A   | CO<br>4 |
|                                                                       | 02      |       |         |
| Classification and characteristics of surface profiles; direct Step   |         |       |         |
| method of computing profile length.                                   | 02      |       |         |
| (B) Rapidly Varied Flow: Definition of hydraulic jump; Equation       | 03      |       | 4       |
| of hydraulic jump in horizontal, rectangular channel; Length &        |         |       |         |
| height of jump; Energy loss in jump classifications of jump           |         |       |         |
|                                                                       |         |       |         |

| Concept of Impact of Jet                                         |       |      |         |
|------------------------------------------------------------------|-------|------|---------|
| Force exerted on stationary and moving plate and curved          | 02    |      | 4       |
| surface, concept of velocity triangles                           |       |      |         |
|                                                                  | 07    |      |         |
| Unit No.5                                                        |       |      |         |
|                                                                  | Allot | ment | Mapped  |
| Fluid Machinery                                                  | of    |      | with CC |
| Fiulu Ivrachinery                                                | Hou   | rs   | Number  |
|                                                                  | L     | T/A  | СО      |
| (A) Turbines: Definition: Gross and net heads; different         | 02    |      | 5       |
| efficiencies; Classification of turbines; component parts and    |       |      |         |
| working principles; selection of turbines on the basis of head   |       |      |         |
| and specific speed.                                              |       |      |         |
| (B) Reciprocating Pumps: Components parts, working principle,    | 02    |      | 5       |
| Work done of single & double acting pumps; Negative slip, Air    |       |      |         |
| vessels-Working principle and necessity, indicator diagram       |       |      |         |
| (C) Centrifugal Pump: Component parts; working principle; Static | 03    |      | 5       |
| and manometric heads; different efficiencies; Priming &          |       |      |         |
| priming devices, Specific speed; Theoretical aspects of          |       |      |         |
| multistage pumps; Trouble & remedies; operating                  |       |      |         |
| characteristics curves.                                          |       |      |         |
|                                                                  | 07    |      |         |

|            |           | I            | References |                  |      |          |           |  |
|------------|-----------|--------------|------------|------------------|------|----------|-----------|--|
| Applicable | Name of   | Name of      | Name of    | Edition          |      | Category |           |  |
| for Unit   | Book      | Author       | Publisher  |                  | Text | Research | Reference |  |
| No.        | DOOK      |              | 1 ublisher | e det            | Book | paper    | book      |  |
| 1 and 5    | Fluid     | P.N.Modi and | Standard   | 21 <sup>st</sup> | Yes  |          |           |  |
|            | Mechanics | S.M. Seth    | Book       | 2017             |      |          |           |  |
|            | and       |              | House      | _011             |      |          |           |  |
|            | Hydraulic |              | Delhi      |                  |      |          |           |  |
|            | Machines  |              |            |                  |      |          |           |  |
| All        | Fluid     | A.K.Jain     | Khanna     | 9 <sup>th</sup>  | Yes  |          |           |  |
|            | Mechanics |              | Publishers | 2006             |      |          |           |  |
|            |           |              | Nai Sarak  | _000             |      |          |           |  |
|            |           |              | New        |                  |      |          |           |  |
|            |           |              | Delhi.     |                  |      |          |           |  |

| 2 to 5 | Fluid       | R.K.Rajput    | S.Chand    | 6 <sup>th</sup> | Yes |     |
|--------|-------------|---------------|------------|-----------------|-----|-----|
|        | Mechanics   |               | &          | 2015            |     |     |
|        |             |               | Company    |                 |     |     |
|        |             |               | Pvt(L),    |                 |     |     |
|        |             |               | New        |                 |     |     |
|        |             |               | Delhi      |                 |     |     |
|        | Hydraulics, | S.Ramamrutham | Dhanpat    | 6 <sup>th</sup> | Yes |     |
|        | Fluid       |               | Rai        | 1998            |     |     |
|        | Mechanics   |               | Publishing | 1770            |     |     |
|        | and         |               | Co., New   |                 |     |     |
|        | Hydraulic   |               | Delhi      |                 |     |     |
|        | Machine     |               |            |                 |     |     |
|        | Flow in     | K. Subramanya | Tata       | 2 <sup>nd</sup> |     | Yes |
|        | open        |               | McGraw     | 1997            |     |     |
|        | channels    |               | Hills      | 1///            |     |     |
|        |             |               | Publishing |                 |     |     |
|        |             |               | Company    |                 |     |     |
|        |             |               | Ltd, New   |                 |     |     |
|        |             |               | Delhi      |                 |     |     |
|        |             |               |            |                 |     |     |



(Dr. A.N. Dalhade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvif Engg) chairman

# RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

### **B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)**

| Sem:V           |                       | Two Hours Distribution per week                        |                       |  |  |  |  |
|-----------------|-----------------------|--------------------------------------------------------|-----------------------|--|--|--|--|
| Total Credit: 1 | Practical (P): 02 Hrs | ractical (P): 02 Hrs.                                  |                       |  |  |  |  |
| Subject Code    | BTCVE501(P)           | BTCVE501(P) Name of Subject: Hydraulics Engineering(P) |                       |  |  |  |  |
|                 | Examination Scheme    |                                                        |                       |  |  |  |  |
| Internal Marks: | University Marks:     | Minimum Passing                                        | Examination Duration: |  |  |  |  |
|                 |                       | Marks:                                                 |                       |  |  |  |  |
| 25 Marks        | 25 Marks              | 25 Marks                                               |                       |  |  |  |  |

# List of Experiments- (Minimum 8 experiments should be performed)

- 1. Determination of Frictional factor of a pipe line
- 2. Determination of minor losses through a pipe system
- 3. Determination of critical slope of an open channel
- 4. Study on Main characteristics of a centrifugal pump
- 5. Study on operating characteristics of a reciprocating pump
- 6. Study on operating characteristics of a centrifugal pump
- 7. Study on main characteristics of reciprocating pump
- 8. Analysis of Hydraulic jump in open channel
- 9. Determination of coefficient of impact of jet
- 10. Study of characteristics of a Pelton wheel
- 11. Study of characteristics of a Francis Turbine
- 12. Study of Reynolds's experiment
- 13. Determination Chesy's and Manning constants
- 14. Analysis of a Water Distribution network by Hardy cross method

Censes G. Ronde

10000 (Dr. A.N. Dashade)

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman

| Sem: V                                                                            | Total Hours Distribution per week 3-1-0 |                                                              |             |      |         |        |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-------------|------|---------|--------|--|--|
| Total Credit:04                                                                   | Lecture (L):03 Hrs                      | L):03 Hrs Tutorial/Activity (T/A): 01 Hrs. Practical (P): 00 |             |      |         |        |  |  |
| Subject Code                                                                      | BTCVE502T                               | Name of Subject: Reinforced Cement Concrete Designs          |             |      |         |        |  |  |
|                                                                                   | Examination Scheme                      |                                                              |             |      |         |        |  |  |
| Internal Marks:                                                                   |                                         | University                                                   | Minimum Pas | sing | Examir  | nation |  |  |
|                                                                                   |                                         | Marks:                                                       | Marks:      | _    | Duratio | on:    |  |  |
| 30 Marks<br>(15 Marks for sessional examination)<br>(15 Marks for Activity based) |                                         | 70 Marks                                                     | 45 Marks    |      | 4 Hr    |        |  |  |

| Course | Objective                                                                                       |
|--------|-------------------------------------------------------------------------------------------------|
| 1      | To understand phenomenon's of design concepts and learning various codes related to RCC design. |
| 2      | To understand the structural behavior of steel and concrete.                                    |
| 3      | To apply conventional methods for design structural components of building.                     |

| Course                                                                                                               | Course Outcome                                                                                                        |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| After completion of syllabus student able to                                                                         |                                                                                                                       |  |  |  |  |  |  |  |  |
| 1 Understand the fundamental concepts of working stress method as per IS 456- 2000 and Pre-stressed concrete method. |                                                                                                                       |  |  |  |  |  |  |  |  |
| 2                                                                                                                    | Apply the fundamental concepts of limit state method on limit state of serviceability                                 |  |  |  |  |  |  |  |  |
| 3                                                                                                                    | Analyze the fundamental concepts of limit state of collapse in flexure, Shear & Bond as per IS 456-2000.              |  |  |  |  |  |  |  |  |
| 4                                                                                                                    | Evaluate the fundamental concepts of limit state of collapse in compression and design of footing as per IS 456-2000. |  |  |  |  |  |  |  |  |
| 5                                                                                                                    | Design of Simply supported Two-way slab                                                                               |  |  |  |  |  |  |  |  |

| CO/PO                         | PO<br>1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------------------------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Subject<br>Code<br>&CO<br>NO. |         |     |     |     |     |     |     |     |     |      |      |      |
| CO1                           | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO2                           | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO3                           | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO4                           | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5                           | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| Avg CO                        | 3       | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |

1 Low 2 Medium

3 High

| Unit No.1                                                                |        |         |         |
|--------------------------------------------------------------------------|--------|---------|---------|
|                                                                          | Allotm | nent of | Mapped  |
| Details of Topic                                                         | Hours  |         | with CO |
|                                                                          |        |         | Number  |
|                                                                          | L      | T/A     | СО      |
| Introduction to the Working Stress Method of RCC design. Basic           | 07     |         | 1       |
| concept in design for flexure, assumptions, design constants.            |        |         |         |
| Analysis of the rectangular section. (Balanced, under-reinforced and     |        |         |         |
| over-reinforced sections).                                               |        |         |         |
| Introduction to Prestress Concrete: Properties of high grade             |        |         |         |
| materials, concepts of prestress concrete, method of pre-stressing,      |        |         |         |
| losses in pre- stressing. Various systems for pre-stressing with         |        |         |         |
| particular reference to Freyssinet, Magnel Blatton and Giffod Udall      |        |         |         |
| system                                                                   |        |         |         |
|                                                                          | 07     |         |         |
| Unit No.2                                                                |        |         | L       |
| Introduction to Limit State Design: Concept of limit state design        | 10     |         | 2       |
| and philosophy. Characteristic values, partial safety factors, stress    |        |         |         |
| strain relationship stress block parameters, failure criteria, types and |        |         |         |
| properties of reinforcement, limit state of Serviceability and limit     |        |         |         |
| state of collapse. Limit states of durability                            |        |         |         |
| Limit State of serviceability:                                           |        |         |         |
| Causes and control of cracking: Crack in plastic concrete at early       |        |         |         |
|                                                                          |        |         |         |

| age, cracks due to temperature and shrinkage, restrain induced        |    |   |
|-----------------------------------------------------------------------|----|---|
| cracks, cracks due to loading. Needs for crack width control.         |    |   |
| Moment– curvature relationship, deflection control of beams and one   |    |   |
| way slabs. Limit state of collapse in flexure: Analysis and design of |    |   |
| singly reinforced rectangular section. Limit state of Collapse in     |    |   |
| Flexure: Analysis & design of the Tee & L- beam section.              |    |   |
| Limit state of Collapse in Shear & Bond: Design of beam for shear,    |    |   |
|                                                                       |    |   |
| shear span, post cracking resistance, shear mechanism approach,       |    |   |
| shear failure modes and collapse loads, interaction of shear, flexure |    |   |
| and axial force ,Check for bond.                                      |    |   |
|                                                                       | 10 |   |
| Unit No.3                                                             |    |   |
| Limit state of collapse in compression: Analysis & design of short    | 08 | 3 |
| axially loaded column. Columns subjected to uni-axial bending, use of |    |   |
| interaction curves.                                                   |    |   |
|                                                                       | 08 |   |
|                                                                       |    |   |

| Unit No.4                                                             |    |   |   |
|-----------------------------------------------------------------------|----|---|---|
| Design of one -way, simply supported, single span and cantilever      | 07 |   | 4 |
| slabs and continuous slab / beam with IS coefficients,                |    |   |   |
|                                                                       | 07 |   |   |
| Unit No.5                                                             |    | 1 |   |
| Design of rectangular pad / slopped footing for axial load. Design of | 04 |   | 5 |
| Simply supported Two-way slab                                         |    |   |   |
|                                                                       | 04 |   |   |

|               | 1.                                                                                                   | P.C.Varghese, Limit State design of Reinforced Concrete, 2nd Edition, PHI<br>Learning Pvt Ltd, 2006 |  |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Text<br>Books | 2.                                                                                                   | M.L.Gambhir, Design of Reinforced Concrete, 4th Edition, PHI Learning Pvt Ltd, 2011                 |  |  |  |  |  |
|               | 3. M.L.Gambhir, Fundamental of Reinforced Concrete Design, 5th Edition, PH<br>Learning Pvt Ltd, 2011 |                                                                                                     |  |  |  |  |  |
| EBooks        | 1.                                                                                                   | Design of Reinforced Masonry Structures, Second Edition, Narendra Taly, Ph.D., P.E., F.ASCE         |  |  |  |  |  |
| EBOOKS        | 2.                                                                                                   | Building Design and Construction Handbook, Sixth Edition, Frederick S. Merritt                      |  |  |  |  |  |

| Reference             | 1. | Dr. V.L.Shah & Dr. S.R.Karve, Limit State Theory and Design of Reinforced<br>Concrete (As Per IS : 456 - 2000), 7th Edition, Structures Publications, 2013 |
|-----------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Books                 | 2. | "Illustrated Reinforced Concrete Design" by Dr. V.L.Shah and Dr. S.R. Karve,<br>'Structures Publications', Pune 411009                                     |
| online TL<br>Material | 1. | Design of Reinforced Concrete Structures, Civil Engineering, Prof. N. Dhang,<br>IIT Kharagpur                                                              |

|                            | List of Code/Handbook                                                        |                 |                     |  |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------|-----------------|---------------------|--|--|--|--|--|--|--|--|
| Applicable<br>for Unit No. | Title of Code                                                                | Type of<br>code | Year of Publication |  |  |  |  |  |  |  |  |
| ALL                        | IS 456 PLAIN AND REINFORCED CONCRETE<br>- CODE OF PRACTICE (Fourth Revision) |                 | 2000                |  |  |  |  |  |  |  |  |

Censes G. Ronde Allen (Dr. A.N. Dashade) Bos Member

De (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V             |                                       | Total Hours Distribution per week                                 |                       |                |  |  |  |  |  |  |
|--------------------|---------------------------------------|-------------------------------------------------------------------|-----------------------|----------------|--|--|--|--|--|--|
| Total Credit: 03   | Lecture (L): 3Hrs                     | Tutorial/Activit                                                  | Practical (P): 2 Hrs. |                |  |  |  |  |  |  |
| Subject Code       | BTCVE 503T                            | Name of Subject: Civil Engineering Materials, Testing aEvaluation |                       |                |  |  |  |  |  |  |
| Examination Scheme |                                       |                                                                   |                       |                |  |  |  |  |  |  |
| Interna            | l Marks:                              | University                                                        | Minimum Passir        | ng Examination |  |  |  |  |  |  |
|                    |                                       | Marks:                                                            | Marks:                | Duration:      |  |  |  |  |  |  |
| 30 N               | larks                                 |                                                                   |                       |                |  |  |  |  |  |  |
|                    | ional Examination)<br>Activity based) | 70 Marks                                                          | 45 Marks              | 3 Hours        |  |  |  |  |  |  |

| Course | e Objective                                                                                                                                                                              |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | The properties and importance of various constituent materials of concrete used in construction                                                                                          |
| 2      | The mechanical behaviour of engineering materials under compressive and tensile loads                                                                                                    |
| 3      | The fundamentals of fracture mechanics and identify initiation and propagation of crack around stress-strain fields.                                                                     |
| 4      | The standard testing procedures and assess engineering properties of construction materials.                                                                                             |
| 5      | The main goal of this course is to provide students with all information concerning<br>principle, way of measurement, as well as practical application of mechanical<br>characteristics. |

| Course   | Course Outcome                                                                      |  |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| After co | After completion of syllabus student able to                                        |  |  |  |  |  |  |  |  |
| 1.       | 1. Evaluate the role of materials in Civil Engineering                              |  |  |  |  |  |  |  |  |
| 2.       | Know the mechanical behaviour and properties of steel and concrete by standard      |  |  |  |  |  |  |  |  |
|          | testing procedures for identifying their performance                                |  |  |  |  |  |  |  |  |
| 3.       | Explain special materials, composite materials and use of new techniques in         |  |  |  |  |  |  |  |  |
|          | constructions for satisfying the future needs of industry.                          |  |  |  |  |  |  |  |  |
| 4.       | Exposure to a variety of established material testing procedures/techniques and the |  |  |  |  |  |  |  |  |
|          | relevant codes of practice                                                          |  |  |  |  |  |  |  |  |
| 5.       | Evaluate and write a technical laboratory report.                                   |  |  |  |  |  |  |  |  |

| CO/PO                      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------------------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|
| Subject<br>Code &CO<br>NO. |     |     |     |     |     |     |            |     |     |      |      |      |
| 1                          | 2   | 3   |     |     | 2   |     | 2          |     |     |      |      | 3    |
| 2                          | 2   |     |     | 2   | 2   | 1   | 2          |     | 1   |      |      | 2    |
| 3                          | 2   |     |     | 2   | 2   | 2   | 3          |     |     |      |      | 3    |
| 4                          | 2   | 3   |     | 2   | 2   |     |            |     |     |      |      | 3    |
| 5                          | 2   |     |     | 3   |     |     |            |     |     | 1    | 2    | 3    |

1 Low 2 Medium

3 High

| Unit No.1 Introduction To Civil Engineering Materials                   |                          |                     |                             |
|-------------------------------------------------------------------------|--------------------------|---------------------|-----------------------------|
| Details of Topic                                                        |                          | tment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                         | L                        | T/A                 | СО                          |
| Introduction and uses of cement, sand, aggregates                       | 01                       |                     | 1                           |
| concrete, mortar and grouts, masonry mortars, rendering, cementations   | 02                       |                     | 1                           |
| grouts                                                                  |                          |                     |                             |
| RCC, clay bricks, calcium silicate bricks, concrete blocks., rubbles,   | 02                       |                     | 1                           |
| steel, mechanical properties of steel, different applications           |                          |                     |                             |
| Floor and roofing tiles, slates, timber, strength of timber, engineered | 02                       |                     | 1                           |
| wood products metals, glass for glazing, glass fibres, glass wool       |                          |                     |                             |
| Water proofing agents: any five water proofing agents, difference       | 01                       |                     | 1                           |
| between wetting agents and water proof agent                            |                          |                     |                             |
|                                                                         | 08                       |                     |                             |
| Unit No.2 Basic Properties of Materials                                 |                          |                     |                             |
| Details of Topic                                                        | Allotment<br>of<br>Hours |                     | Mapped<br>with CO<br>Number |
|                                                                         | L                        | T/A                 | CO                          |
| Importance of materials in civil engineering construction, types of     | 04                       |                     | 2                           |
| materials such as ceramics, concrete, composites, optical /electronics  |                          |                     |                             |
| materials, glass, metals, nano-materials, polymers and plastics, wood   |                          |                     |                             |
| and other materials, comparison of strengths of various materials.      |                          |                     |                             |
| Some basic properties of materials such as temperature, energy,         | 03                       |                     | 2                           |
| specific heat, thermal conductivity, coefficient of thermal expansion,  |                          |                     |                             |

| comparison for environmental impact, health and safety.                    |         |                      |                             |
|----------------------------------------------------------------------------|---------|----------------------|-----------------------------|
|                                                                            | 07      |                      |                             |
| Unit No.3 Special Materials                                                |         |                      |                             |
| Details of Topic                                                           |         | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                            | L       | T/A                  | СО                          |
| Composite Materials: RCC, FRC, AAC (Autoclaved aerated concrete)           | 03      |                      | 3                           |
| blocks, WPC (Wood-plastic composites) Material, Cera sheets, 3D wall       |         |                      |                             |
| WPC panels, polymer based materials, steel/concrete composite bridge       |         |                      |                             |
| decks, fibre reinforced plastics structural insulated panels.              |         |                      |                             |
| New Techniques in Constructions-Introduction, 3D printing, photo           | 04      |                      | 3                           |
| catalytic admixture, self-healing concrete, Biomaterials, zero cement      |         |                      |                             |
| concrete ,hemp lime, wood-glass epoxy composites, bamboo.                  |         |                      |                             |
|                                                                            | 07      |                      |                             |
| Unit No.4 Testing Procedures of Materials                                  |         |                      |                             |
| Details of Topic                                                           | Allo    | otment               | Mapped                      |
|                                                                            |         | of<br>ours           | with CO                     |
|                                                                            |         |                      | Number                      |
|                                                                            | L       | T/A                  | СО                          |
| Material Testing, Machines and Equipment RequirementsNecessity             | 03      |                      | 4                           |
| of material testing, various testing methods, destructive tests,           |         |                      |                             |
| classification of destructive testsstatic, impact and cyclic testing, non- |         |                      |                             |
| destructive testing- its classification ,visual inspection, penetration    |         |                      |                             |
| test, ultrasonic test.                                                     |         |                      |                             |
| Testing Procedures for bricks, reinforcing steel, fine aggregates, coarse  | 04      |                      | 4                           |
| aggregates. Documenting the experimental program, including the test       |         |                      |                             |
| procedures, collected data, method of interpretation and final results.    |         |                      |                             |
|                                                                            | 07      |                      |                             |
| Unit No.5 Testing and Evaluation Procedures of Materials                   |         | 1                    |                             |
|                                                                            |         | otment<br>of         | Mapped<br>with CO           |
| Details of Topic                                                           | Н       | ours                 | Number                      |
| Quality control Use of test date / testing and its in the interview        | L<br>04 | T/A                  | CO<br>5                     |
| Quality control- Use of test data/ testing reports in the material         | 04      |                      | 5                           |
| selection for various civil engineering projects /construction, Sampling,  |         |                      |                             |
| Acceptance criterion,                                                      |         |                      |                             |
| Code of practice and guidelines in this regards for                        | 03      |                      | 5                           |
| Cements; Aggregates; Concrete (plain and reinforced); Soils; Bitumen       |         |                      |                             |
| and asphaltic materials; Timbers; Glass and Plastics; Structural Steel.    |         |                      |                             |
|                                                                            | 07      |                      |                             |

|                        |                  |                | References        |         |              |                   |                   |
|------------------------|------------------|----------------|-------------------|---------|--------------|-------------------|-------------------|
| Applicable<br>for Unit | Name of Book     | Name of Author | Name of Publisher | Edition |              | Categor           | y                 |
| No.                    |                  |                |                   |         | Text<br>Book | Research<br>paper | Reference<br>book |
| 1,2                    | 'Building        | Chudley, R.,   | R.                | (6th    | $\checkmark$ |                   |                   |
|                        | Construction     | Greeno         | Butterworth-      | ed.)    |              |                   |                   |
|                        | Handbook         | (2006),        | Heinemann         |         |              |                   |                   |
| 4                      | Mechanical       | Kyriakos       | Cognella          |         |              |                   | $\checkmark$      |
|                        | Testing of       | Komvopoulos    |                   |         |              |                   |                   |
|                        | Engineering      | (2011),        |                   |         |              |                   |                   |
|                        | Materials,       |                |                   |         |              |                   |                   |
| 1,2,4                  | ' Highway        | Khanna, S.K.,  | Nem Chand &       | Fifth   | $\checkmark$ |                   |                   |
|                        | Materials and    | Justo, C.E.G   | Bros,             | Edition |              |                   |                   |
|                        | Pavement         | and            |                   |         |              |                   |                   |
|                        | Testing'         | Veeraragavan   |                   |         |              |                   |                   |
|                        |                  |                |                   |         |              |                   |                   |
| 1,2,3                  | Mechanical       | E.N. Dowling   | Prentice Hall,    |         |              |                   | √                 |
|                        | Behaviour of     | (1993)         | International     |         |              |                   | •                 |
|                        | Materials        |                | Edition           |         |              |                   |                   |
| 1-5                    | Building         | N.             | Publisher:        |         |              |                   | √                 |
|                        | Materials, Testi | Subramania     | Oxford            |         |              |                   |                   |
|                        | ng, and          |                | University        |         |              |                   |                   |
|                        | Sustainability   |                | Press, New        |         |              |                   |                   |
|                        |                  |                | Delhi             |         |              |                   |                   |
| 1-5                    | Related papers   |                |                   |         |              | √                 |                   |
|                        | published in     |                |                   |         |              |                   |                   |
|                        | international    |                |                   |         |              |                   |                   |
|                        | journals         |                |                   |         |              |                   |                   |

|                            | List of Code/Handbook                                         |              |                     |  |  |  |
|----------------------------|---------------------------------------------------------------|--------------|---------------------|--|--|--|
| Applicable<br>for Unit No. | Title of Code                                                 | Type of code | Year of Publication |  |  |  |
|                            | IS: 456 – code of practice for plain and reinforced concrete. |              | 2000/2016           |  |  |  |
|                            | IS: 2386 – methods of tests for aggregate for concrete.       |              | 1963                |  |  |  |
|                            | 10262; SP 23 – codes for designing concrete mixes.            |              | 2009/2019           |  |  |  |
|                            | IS: 13311 – ultrasonic testing of concrete structures.        |              | 1992                |  |  |  |

| IS:1199 - Fresh Concrete – Tests                                                                     |                | 2018        |
|------------------------------------------------------------------------------------------------------|----------------|-------------|
| IS:3495 - Burnt Clay Bricks Tests                                                                    |                | 1992/2016   |
| IS:1786 –High strength deformed steel<br>bars and wires for concrete<br>reinforcement— specification |                | 2008        |
| IS:2062 - Hot rolled medium and high tensile structural steel — specification                        |                | 2011        |
| IS:1608 - Metallic Materials — Tensile<br>Testing (Part 1-3)                                         |                | 2005/2018   |
| IS:1599 - Methods for bend test                                                                      |                | 2012        |
| American Society for Testing and                                                                     | Annual Book of | (post 2000) |
| Materials (ASTM),                                                                                    | ASTM Standards |             |
| BIS, IRC, ASTM, RILEM, AASHTO,                                                                       |                |             |
| etc. corresponding to materials used for                                                             |                |             |
| Civil Engineering application                                                                        |                |             |



#### CIVIL ENGINEERING MATERIALS, TESTING AND EVALUATION

#### BTCVE503P

**Evaluation Scheme: (25-Internal/25-External)** 

### (P-2 Hrs/Week); Total Credits- 01

#### Minimum Eight Practical's from the given below list should be performed

| Sr. | Details of Topic                                                                              |
|-----|-----------------------------------------------------------------------------------------------|
| No. |                                                                                               |
| 1   | Tests on cement (Any Two)                                                                     |
| 1   |                                                                                               |
|     | Field test on cement, Fineness, Normal consistency, Initial and Final Setting times, Specific |
|     | gravity, Soundness, Compressive strength,                                                     |
| 2   | Tests on fine aggregate (Any Two)                                                             |
|     | Grain size distribution, Uniformity coefficient and fineness modulus, Specific gravity,       |
|     | Density, Void ratio, Bulking & Absorption                                                     |
| 3   | Tests on coarse aggregate (Any Two)                                                           |
|     | Grain size distribution, Uniformity coefficient and fineness modulus, Specific gravity,       |
|     | Density, Void ratio, Absorption                                                               |
| 4   | Concrete mix Design                                                                           |
| 5   | Test on concrete by using IS code method (Any Two)                                            |
|     | (a) Workability test, Slump test, Compaction factor test, Flow table test, Vee-Bee Consist    |
|     | meter,                                                                                        |
|     | (b) Compressive strength, Split tensile strength, Flexure test on beams, Modulus of           |
|     | elasticity                                                                                    |
| 6   | Tests on bricks Crushing strength, water absorption and efflorescence                         |
| 7   | Tensile and Compressive strength of materials & concrete composites                           |
| 8   | Tests on polymers and polymer-based materials                                                 |
| 9   | Testing on Ceramic Floor, Wall Tiles, Paver-blocks, Mosaic tiles, IS code recommendations.    |
| 10  | Study of non-destructive testing of concrete (NDT)                                            |
| 11  | Field density of bituminous roads                                                             |
|     | 1                                                                                             |



A.N. Dabhade) bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V           | Total Hours Distribution per week           |                                               |                |                      |  |  |
|------------------|---------------------------------------------|-----------------------------------------------|----------------|----------------------|--|--|
| Total Credit: 03 | Lecture (L): 3 Hrs                          | Tutorial/Activity (                           | Г/А): 0 Hrs. Р | ractical (P): 0 Hrs. |  |  |
| Subject Code     | BTCVE504T                                   | Name of Subject: Professional Practice, Law & |                |                      |  |  |
|                  |                                             | Ethics                                        |                |                      |  |  |
|                  | Ex                                          | amination Scheme                              |                |                      |  |  |
| Inter            | nal Marks:                                  | University                                    | Minimum Pas    | ssing Examination    |  |  |
|                  |                                             | Marks:                                        | Marks:         | Duration:            |  |  |
| 30               | ) Marks                                     |                                               |                |                      |  |  |
|                  | essional examination)<br>or Activity based) | 70 Marks                                      | 45 Marks       | s 3 Hours            |  |  |

| Course | Objective                                                                             |
|--------|---------------------------------------------------------------------------------------|
| 1      | The objective of this course is to inculcate the sense of social responsibility among |
|        | learners and to make them realize the significance of ethics in professional          |
|        | environment so as to make them a global citizen                                       |

| Course   | Outcome                                                                                          |
|----------|--------------------------------------------------------------------------------------------------|
| After co | ompletion of syllabus student able to                                                            |
| 1        | Understand basic purpose of profession, professional ethics and various moral and social issues. |
| 2        | Analyse various moral issues and theories of moral development                                   |
| 3        | Realize their roles of applying ethical principles at various professional levels                |
| 4        | Identify their responsibilities for safety and risk benefit analysis.                            |
| 5        | understand their constructive roles in dealing various global issues                             |

| CO/PO          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| BECVE504T      |     |     |     |     |     | 2   | 2   | 3   |     |      |      | 1    |
| BECVE504T<br>2 |     |     |     |     |     | 2   | 2   | 3   |     |      |      | 1    |
| BECVE504T      |     |     |     |     |     | 2   | 2   | 3   |     |      |      | 1    |
| BECVE504T      |     |     |     |     |     | 2   | 2   | 3   |     |      |      | 1    |
| BECVE504T      |     |     |     |     |     | 2   | 2   | 3   |     |      |      | 1    |

1 Low

3 High

## SYLLABUS

2 Medium

| Unit No.1                                                                       |       |      |         |  |
|---------------------------------------------------------------------------------|-------|------|---------|--|
|                                                                                 | Allot | ment | Mapped  |  |
| Details of Topic                                                                | of    |      | with CO |  |
|                                                                                 | Hou   | s    | Number  |  |
|                                                                                 | L     | T/A  | СО      |  |
| Human Values, Morals, values and Ethics, Integrity, Work ethics, Service        |       |      |         |  |
| learning, Civic virtue, Respect for others, Living peacefully, Caring, Sharing, | 08    |      | 1       |  |
| Honesty, Courage                                                                |       |      |         |  |
| Unit No.2                                                                       |       |      |         |  |
| Engineering Ethics, Senses of 'Engineering Ethics', Variety of moral            |       |      |         |  |
| issues, Moral dilemmas, Moral Autonomy, Kohlberg's theory,                      | 07    |      | 2       |  |
| Gilligan's theory                                                               |       |      |         |  |
| Unit No.3                                                                       |       |      |         |  |
| Engineering as Social Experimentation, Engineering as                           |       |      |         |  |
| Experimentation, Engineers as responsible Experimenters, Codes of               |       |      |         |  |
| Ethics, A Balanced Outlook on Law(Industrial Disputes Act, 1947;                |       |      |         |  |
| Industrial Employment ( Standing Orders) Act, 1946; Workmen's                   | 07    |      | 3       |  |
| Compensation Act, 1923; Building & Other Construction Workers (regulation       |       |      |         |  |
| of employment and conditions of service) Act (1996) and Rules (1998);           |       |      |         |  |
| RERA Act 2017, NBC 2017)                                                        |       |      |         |  |
| Unit No.4                                                                       |       |      |         |  |
| Safety, Responsibilities and rights, Safety and Risk, Assessment of             |       |      |         |  |
| Safety and Risk, Risk Benefit Analysis and Reducing Risk, Collective            | 07    |      | 4       |  |
| Bargaining, Professional Rights, Employee Rights                                |       |      |         |  |

| Unit No.5                                                           |    |   |
|---------------------------------------------------------------------|----|---|
| Global issues, Multinational Corporations, Computer Ethics, Weapons |    |   |
| Development, Engineers as Managers, Consulting Engineers, Engineers | 07 | 5 |
| as Expert Witnesses and Advisors, Corporate Social Responsibility   | 07 | 5 |
|                                                                     |    |   |

| Referenc                      |                                                |                                                           | NT 6D 111 1                                    | <b>D</b> 114 |                |           |      |
|-------------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|--------------|----------------|-----------|------|
| Applicable<br>for Unit<br>No. | Name of Book                                   | Name of Author                                            | Name of Publisher                              | Edition      | Catego<br>Text | Reference |      |
|                               |                                                |                                                           |                                                |              | Book           | paper     | book |
|                               | Professional<br>Ethics                         | R. Subramaniam                                            | Oxford<br>Publications, New<br>Delhi.          |              |                |           | Yes  |
|                               | Human Values<br>And Professional<br>Ethics by, | Jayshree Suresh<br>and B. S.<br>Raghavan                  | S. Chand<br>Publications                       |              |                |           | Yes  |
| I,II,III                      | Ethics in<br>Engineering by–                   | Mike W. Martin<br>and Roland<br>Schinzinger               | Tata McGraw-Hill<br>– 2003.                    |              |                |           | Yes  |
| , IV,V                        | Human Values &<br>Professional<br>Ethics by,   | S. B. Gogate                                              | Vikas Publishing<br>House Pvt. Ltd.,<br>Noida. |              |                |           | Yes  |
|                               | Professional<br>Ethics and<br>Human Values     | A. Alavudeen,<br>R.Kalil Rahman,<br>and M.<br>Jayakumaran | University<br>Science Press.                   |              |                |           | Yes  |
|                               | Engineering<br>Ethics & Human<br>Values        | M.Govindarajan,<br>S.Natarajan, and<br>V.S.SenthilKumar   | PHI Learning Pvt.<br>Ltd – 2009.               |              |                |           | Yes  |

Censes G. Ronde

Jer 4000 (Dr. A.N. Dalhade)

Bos Member

2 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V             | Total Hours Distribution per week |                                                                       |                            |  |  |  |  |
|--------------------|-----------------------------------|-----------------------------------------------------------------------|----------------------------|--|--|--|--|
| Total Credit: 01   | Lecture (L): 00 Hrs               | Tutorial/Activity (T/A): 0 H                                          | rs. Practical (P): 02 Hrs. |  |  |  |  |
| Subject Code       | BTCVE507P                         | Name of Subject: Industrial Training & Professional<br>Skill Training |                            |  |  |  |  |
| Examination Scheme |                                   |                                                                       |                            |  |  |  |  |
| Internal Marks:    | University Marks:                 | Minimum Passing Marks:                                                | Examination Duration:      |  |  |  |  |
| 50 Marks           | 50 Marks                          | 50 Marks                                                              | -                          |  |  |  |  |

| Course Objective |                                                                                                            |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1                | The objective of the course is to give awareness of practical application of various theoretical concepts. |  |  |  |  |  |  |
| 2                | The objective of the course is to enhanced the skills by using software in the field of Civil Engineering  |  |  |  |  |  |  |

| Course Outcome                               |                                                                              |  |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| After completion of syllabus student able to |                                                                              |  |  |  |  |  |
| 1                                            | Understand organizational skills & professional practices                    |  |  |  |  |  |
| 2                                            | Interpret the communication skills of organizational members with each other |  |  |  |  |  |
| 3                                            | Analyze the structural problems by using STADD.PRO                           |  |  |  |  |  |
| 4                                            | Design the structural members by using STADD.PRO                             |  |  |  |  |  |

| CO/PO      | PO1 | PO2 | PO3   | PO4 | PO5   | PO6  | PO7 | PO8  | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-------|-----|-------|------|-----|------|-----|------|------|------|
| BECVE507P1 |     |     |       |     | 3     |      |     |      | 2   | 2    |      | 1    |
| BECVE507P2 |     |     |       |     | 3     |      |     |      | 2   | 2    |      | 1    |
| BECVE507P3 |     |     |       |     | 3     |      |     |      | 2   | 2    |      | 1    |
| BECVE507P4 |     |     |       |     | 3     |      |     |      | 2   | 2    |      | 1    |
|            |     | 1   | 1 Low |     | 2 Mee | dium |     | 3 Hi | igh |      |      |      |

### **SYLLABUS**

### **Part A: Industrial Training**

### (25 Marks Internal and 25 Marks External)

After successful completion of industrial training of 2 to 3 weeks, students have to give Industry training report including certificate of completion of industrial training.

# Part B: Professional Skill Training on STADD.PRO/Any Other (25 Marks Internal and 25 Marks External)

STAAD PRO is structural analysis and designing software which is used by civil engineers to analyse and design the structure. It helps to reduce the calculations of Shear Force, Bending Moment and deflection of structure.

- Practical Based on: Overview of Structural Analysis and Design, Introduction of STAAD. Pro V8i, STAAD Editor, Creating a New Project in STAAD.Pro, Units, Model Generation, Creating Nodes & Members, Select Menu, Insert Node, Add Beam, Modeling Methods, Long and Short Method Practice, Modeling Practice, Working On Examples.
- Practical Based on: Support Specification, Member Property Specification, And Material Specification. Loading, Analyzing. Understanding Units, Working on examples, Understanding Material Properties, Understanding Various Types of Loads, and Implementing Loads.
- Practical Based on : Performing Analysis, Pre Analysis Print, Post Analysis Print, Area Load, Floor Load.
- 4. Practical Based on: Wind Load Generation, Load Combination & Auto Load Combinations, Repeat Load Cases, Concrete Design.

5. Practical Based on : Concrete Column Design, Concrete Beam Design, Slab Design.

Student have to submit maximum four experiments on above contents (Selection of contents made by concern faculty) in 8 weeks.

Proposed amendment is "STAD Pro V8i or Any Other Equivalent Software may also be used for performing the same activities.



# RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

# **B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)**

| Sem: V           | Total Hours Distribution per week                    |                                                                         |                       |  |  |  |  |
|------------------|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Total Credit: 00 | Lecture (L): 02 Hrs                                  | Lecture (L): 02 HrsTutorial/Activity (T/A): 0 Hrs.Practical (P): 0 Hrs. |                       |  |  |  |  |
| Subject Code     | BTCVE508AU Name of Subject: Organizational Behaviour |                                                                         |                       |  |  |  |  |
|                  | Examination Scheme                                   |                                                                         |                       |  |  |  |  |
| Internal Marks:  | University Marks:                                    | Minimum Passing Marks:                                                  | Examination Duration: |  |  |  |  |
| 50 Marks         | AUDIT                                                |                                                                         |                       |  |  |  |  |

| Course Objective |                                                                                                                                                                                 |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1                | The objective of the course is to create awareness among learners about the various essential aspects of organizational processes and structure and motivation in organization. |  |  |  |  |  |  |

| Course   | Course Outcome                                                               |  |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| After co | After completion of syllabus student able to                                 |  |  |  |  |  |  |  |
| 1        | Understand the concept and importance of organizational behaviour.           |  |  |  |  |  |  |  |
| 2        | Acquire the knowledge of interpersonal behaviour and transaction analysis    |  |  |  |  |  |  |  |
| 3        | Know different traits and theories of personality                            |  |  |  |  |  |  |  |
| 4        | Analyze the importance of motivation in organization and types of leadership |  |  |  |  |  |  |  |

| CO/PO       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| BECVE508AU1 |     |     |     |     |     |     |     |     | 3   | 2    |      | 1    |
| BECVE508AU2 |     |     |     |     |     |     |     |     | 3   | 2    |      | 1    |
| BECVE508AU3 |     |     |     |     |     |     |     |     | 3   | 2    |      | 1    |
| BECVE508AU4 |     |     |     |     |     |     |     |     | 3   | 2    |      | 1    |

1 Low 2 Medium

3 High

| Details of Topic                                  | Allo | Mapped<br>with CO<br>Number |                             |
|---------------------------------------------------|------|-----------------------------|-----------------------------|
|                                                   | L    | T/A                         | CO                          |
| Concept of organization behavior                  | 01   |                             | 1                           |
| Importance of organization behaviour              | 02   |                             | 1                           |
| Key elements of organization behaviour            | 01   |                             | 1                           |
| Scope of organizational behaviour.                | 02   |                             | 1                           |
|                                                   | 06   |                             |                             |
| Unit No.2: Introduction to interpersonal behavior |      |                             |                             |
| Details of Topic                                  |      | otment<br>of<br>ours        | Mapped<br>with CO<br>Number |
|                                                   | L    | T/A                         | CO                          |
| Nature and meaning of interpersonal behaviour     | 01   |                             | 2                           |
| Concept of transaction analysis                   | 02   |                             | 2                           |
| Benefits and uses of transaction analysis         | 01   |                             | 2                           |
| Johari window model.                              | 02   |                             | 2                           |
|                                                   | 06   |                             |                             |
| Unit No.3: Introduction to personality            |      |                             |                             |
| Details of Topic                                  |      | Allotment<br>of<br>Hours    |                             |
|                                                   | L    | T/A                         | CO                          |
| Definition and meaning of personality             | 02   |                             | 3                           |
| Importance of personality                         | 02   |                             | 3                           |
| Theories of personality, personality traits.      | 02   |                             | 3                           |
|                                                   | 06   |                             |                             |

| Unit No.4 : Introduction to Motivation and leadership |    |                          |    |  |
|-------------------------------------------------------|----|--------------------------|----|--|
| Details of Topic                                      |    | Allotment<br>of<br>Hours |    |  |
|                                                       | L  | T/A                      | СО |  |
| Concept and importance of motivation                  | 01 |                          | 4  |  |
| Maslow's two factor theory of motivation.             | 02 |                          | 4  |  |
| Significance of motivation in organization.           | 01 |                          | 4  |  |
| Types of leadership styles                            | 02 |                          | 4  |  |
|                                                       | 06 |                          |    |  |

|                 |                                                  | F                    | References |         |              |                   |                   |  |  |
|-----------------|--------------------------------------------------|----------------------|------------|---------|--------------|-------------------|-------------------|--|--|
| Applicable      | Name of                                          | Name of              | Name of    | Edition | Category     |                   |                   |  |  |
| for Unit<br>No. | Book                                             | Author               | Publisher  |         | Text<br>Book | Research<br>paper | Reference<br>book |  |  |
|                 | Organizational behaviour                         | MN Mishra            |            |         |              |                   |                   |  |  |
| I,II,           | The human<br>side of<br>organization             | Michale<br>Drafke    |            |         |              |                   |                   |  |  |
| III,IV          | Management<br>and<br>Organizational<br>behaviour | Laurie.J.<br>Mullins |            |         |              |                   |                   |  |  |
|                 | Organizational behaviour                         | K.<br>Aaswathappa    |            |         |              |                   |                   |  |  |

Censes 4: Ronde

100 Swells (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V             | Total Hours Distribution per week: 3-0-0                |                                                                 |                           |                          |  |  |  |  |  |  |
|--------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------|--------------------------|--|--|--|--|--|--|
| Total Credit:3     | Lecture (L): 3 Hrs                                      | Tutorial/Activi                                                 | ty (T/A):0 Hrs.           | Practical (P): 0 Hrs.    |  |  |  |  |  |  |
| Subject Code       | BTCVE505T                                               | Name of Subject: Elective – I<br>(Advanced Structural Analysis) |                           |                          |  |  |  |  |  |  |
| Examination Scheme |                                                         |                                                                 |                           |                          |  |  |  |  |  |  |
| Inter              | nal Marks:                                              | University<br>Marks:                                            | Minimum Passing<br>Marks: | Examination<br>Duration: |  |  |  |  |  |  |
| (15 Marks for s    | 0 Marks<br>essional examination)<br>for Activity based) | 70 Marks                                                        | 45 Marks                  | 3 Hours                  |  |  |  |  |  |  |

| Course | Course Objectives                                                                             |  |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1      | To provide the knowledge about strain energy methods                                          |  |  |  |  |  |  |  |
| 2      | To provide the knowledge about buckling of columns and analysis of arches                     |  |  |  |  |  |  |  |
| 3      | To analyse multi-storeyed frame structures using approximate methods                          |  |  |  |  |  |  |  |
| 4      | To develop an understanding, the basic principles of the matrix method of structural analysis |  |  |  |  |  |  |  |
| 5      | To analyse non-prismatic structures (beams and frames) using column analogy method            |  |  |  |  |  |  |  |
| 6      | To introduce finite element method and provide knowledge of structural dynamics               |  |  |  |  |  |  |  |

| Course (  | Course Outcomes                                                                |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| After con | After completion of syllabus students will be able to                          |  |  |  |  |  |  |
| 1         | Compute deflections in two dimensional structures using Strain energy method   |  |  |  |  |  |  |
| 2         | Understand response of long columns                                            |  |  |  |  |  |  |
| 3         | Use the approximate method for analysis of multi-storied frame structures      |  |  |  |  |  |  |
| 4         | Understand Flexibility matrix method and application of column analogy         |  |  |  |  |  |  |
| 5         | Understand the concepts related to structural dynamics & finite element method |  |  |  |  |  |  |

| CO/PO                   | PO1 | PO2 | PO3 | PO4 | PO5    | PO6 | PO7 | PO8   | PO9 | PO10 | PO11 | PO12 |
|-------------------------|-----|-----|-----|-----|--------|-----|-----|-------|-----|------|------|------|
| Subject Code<br>&CO NO. |     |     |     |     |        |     |     |       |     |      |      |      |
| BECVE505T.1             | 3   | 3   | 3   | 3   | 3      | -   | -   | -     | -   | -    | -    | 2    |
| BECVE505T.2             | 3   | 3   | 2   | 3   | 3      | -   | -   | -     | -   | -    | -    | 1    |
| BECVE505T.3             | 3   | 3   | 3   | 3   | 3      | -   | •   | -     | -   | -    | -    | 1    |
| BECVE505T.4             | 3   | 3   | 3   | 3   | 1      | -   | -   | -     | -   | -    | -    | 2    |
| BECVE505T.5             | 3   | 3   | 2   | 2   | 3      | -   | -   | -     | -   | -    | -    | 2    |
|                         | •   | 1]  | Low |     | 2 Medi | um  |     | 3 Hig | gh  |      |      |      |

| Unit No.1:<br>Details of Topic:                                            |    | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|----------------------------------------------------------------------------|----|----------------------|-----------------------------|
|                                                                            | L  | T/A                  | СО                          |
| Strain energy method as applied to the analysis of redundant frames and    |    |                      |                             |
| redundant truss up to two Degrees, Determination of deflection of trusses. | 7  |                      | 1                           |
| Castigliano's theorems. Maxwells reciprocal theorem. Bettis theorem.       |    |                      |                             |
|                                                                            | 7  |                      |                             |
| Unit No.2                                                                  |    |                      |                             |
| Bucking of columns: Euler's and Rankine's formula, Secant Formula          |    |                      |                             |
| Analysis of Two-Hinged Arches S.F. and normal thrust, parabolic            | 5  |                      | 2                           |
| arches.                                                                    |    |                      |                             |
|                                                                            | 5  |                      |                             |
| Unit No.3                                                                  | I. |                      | I                           |
| Approximate method: Analysis of multi-stored frame, portal, cantilever and | 7  |                      | 2                           |
| substitute frame methods. (max. three bay three storey).                   | /  |                      | 3                           |
|                                                                            | 7  |                      |                             |
| Unit No.4                                                                  |    |                      |                             |
| Introduction to Flexibility Method up to two DOF.                          |    |                      |                             |
| Analysis of Grid Member using Stiffness Method                             |    |                      |                             |
| Column Analogy Method – Application to fixed beams, Stiffness and          | 9  |                      | 4                           |
|                                                                            |    |                      |                             |
| carryover factor                                                           |    |                      |                             |
|                                                                            | 9  |                      |                             |

| Unit No.5                                                                |   |   |
|--------------------------------------------------------------------------|---|---|
| Introduction to structural dynamics, D' Alembert Principle, inertia      |   |   |
| force, equation of motion (free vibration), SDOF system, Damping,        |   |   |
| natural frequency, MDOF (up to 3 DOF), Mode shape and nodal              |   |   |
| frequency.                                                               | 8 | 5 |
| Introduction to Finite Element method, basic concepts, discretization of |   |   |
| structures, Rayleigh Ritz method for bar elements (prismatic/non-        |   |   |
| prismatic) Displacement based bar elements (prismatic/non- prismatic)    |   |   |
|                                                                          | 8 |   |

|                               | References                                                    |                             |                               |                          |              |                              |                        |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|--------------|------------------------------|------------------------|--|--|--|--|--|
| Applicable<br>for Unit<br>No. | Name of<br>Book                                               | Name of Author              | Name of<br>Publisher          | Edition                  | Text<br>Book | Categor<br>Research<br>paper | y<br>Reference<br>book |  |  |  |  |  |
| All                           | Theory of<br>Structures                                       | Timoshenko S. P.&Young D.H. | McGraw Hill<br>1965           | International<br>Edition | -            | -                            |                        |  |  |  |  |  |
| All                           | Theory and<br>Analysis of<br>Structures;<br>Vol. I &<br>II'', | Jain, O.P. & Arya, A.S.     | Nemchand<br>Brothers, Roorkee |                          |              | -                            | -                      |  |  |  |  |  |
|                               | Matrix<br>Analysis                                            | Wear & Gear                 |                               |                          |              |                              |                        |  |  |  |  |  |

Center Gilling

Acometer (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V                                                                                  | Total Hours Distribution per week |                                                   |                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------|--|--|--|--|--|--|
| Total Credit: 3Lecture : 3 Hours                                                        |                                   | Tutorial//Activity(T/A):N.A                       | Practical(P): N.A |  |  |  |  |  |  |
| Subject Code                                                                            | BTCVE505T                         | Subject:- Geo Synthetics Engineering (Elective-I) |                   |  |  |  |  |  |  |
| Examination Scheme                                                                      |                                   |                                                   |                   |  |  |  |  |  |  |
| Internal Marks-                                                                         | University                        | Minimum Passing Marks:                            | Examination       |  |  |  |  |  |  |
| Internar Warks-                                                                         | Marks                             | Winning Taiks.                                    | Duration:         |  |  |  |  |  |  |
| 30 Marks<br>(15 Marks for sessional<br>Examination)<br>(15 Marks for Activity<br>based) | 70 Marks                          | 45 Marks                                          | 3Hours            |  |  |  |  |  |  |

| Course Objective |                                                                                            |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1                | To determine the properties, functions and applications of various geosynthetic materials. |  |  |  |  |  |  |  |  |
| 2                | To impart knowledge about manufacturing methods.                                           |  |  |  |  |  |  |  |  |
| 3                | Introduce to the students, Mechanism, improvement of Bearing capacity.                     |  |  |  |  |  |  |  |  |
| 4                | To impart knowledge about applications and functions of geosynthetics.                     |  |  |  |  |  |  |  |  |
| 5                | To design reinforced soil structures.                                                      |  |  |  |  |  |  |  |  |

| Course             | Course Outcome                                                                      |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| After co           | After completion of syllabus student able to                                        |  |  |  |  |  |  |  |
| 1                  | To understand types of geosynthetics and its techniques to use properly in suitable |  |  |  |  |  |  |  |
| construction site. |                                                                                     |  |  |  |  |  |  |  |
| 2                  | Understand the different functions of Geosynthetics .                               |  |  |  |  |  |  |  |
| 3                  | Understand the applications of geosynthetics in Civil engineering field.            |  |  |  |  |  |  |  |
| 4                  | Study and identify about various reinforced soil structures.                        |  |  |  |  |  |  |  |
| 5                  | Understand reinforced soil embankments.                                             |  |  |  |  |  |  |  |

| CO/ P0 | PO1 | PO2 | PO3  | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--------|-----|-----|------|------|-----|-----|-----|-----|-----|------|------|------|
| C 01   | 3   | 2   | 2    | 2    |     | 2   | 2   | 1   |     |      | 2    | 2    |
| C 02   | 3   | 2   | 1    | 2    | 1   |     | 2   | 1   |     | 1    |      | 2    |
| C 03   | 3   |     | 2    | 2    | 1   | 2   |     | 1   |     | 2    |      | 2    |
| C 04   | 3   |     | 1    | 1    | 1   | 2   | 2   | 1   |     | 2    |      | 2    |
| C 05   | 3   | 2   | 2    | 2    | 2   |     |     | 1   |     |      | 2    | 2    |
| AVG.   | 3   | 2   | 1.67 | 1.83 | 1.4 | 2   | 2   | 1   |     | 1.67 | 2    | 2    |

1Low

3High

### **SYLLABUS**

2Medium

| Details of Topic                                                         | Allotmer<br>of<br>Hours<br>L<br>01<br>03<br>03<br>03<br>03<br>01<br>01<br>08 |     | Mapped<br>with CO<br>Number |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|-----------------------------|
|                                                                          | L                                                                            | T/A | со                          |
| UNIT NO.1 Properties and Laboratory Testing of Geosynthetics             |                                                                              |     |                             |
| Geotextiles: Basic properties and its determination.                     | 01                                                                           |     | 1                           |
| Determination of Hydraulic properties, Mechanical properties and its     |                                                                              |     |                             |
| determination - Results of the tests Geotextile Interface friction       |                                                                              |     |                             |
| evaluation -Modified Direct Shear Test, pull out test, Results of the    | 03                                                                           |     | 1                           |
| test Survivability Characteristics – puncture test, CBR Push through     |                                                                              |     |                             |
| test, Tear test, Diaphragm bursting Test, Cone drop                      |                                                                              |     |                             |
| Test Durability Characteristics – Abrasion resistance Geogrid:           |                                                                              |     |                             |
| Mechanical properties-Tension test, Geogrid-soil interaction,            |                                                                              |     |                             |
| Geogrid Interface friction evaluation -Modified Direct Shear Test,       | 03                                                                           |     | 1                           |
| pull out test. Range of values of important properties,                  |                                                                              |     |                             |
| Functional Requirements of Geosynthetics, Minimum Values                 |                                                                              |     |                             |
| specified by regulatory authorities IS Code provisions                   | 01                                                                           |     | 1                           |
|                                                                          | 08                                                                           |     |                             |
| UNIT NO.2 Erosion Control and Pavement Construction                      |                                                                              |     |                             |
| Erosion control products, Mechanism of erosion control with              |                                                                              |     |                             |
| reinforced vegetation, Installation of REPs on slopes, Functions of      |                                                                              |     |                             |
| coir Geotextile, Geotextile silt fences for sediment control, silt fence | 03                                                                           |     | 2                           |
| installation                                                             |                                                                              |     |                             |
| : Functions of Geotextile in Pavement, Advantages, U.S. forest           |                                                                              |     |                             |
| Service Design method, Construction procedure                            | 03                                                                           |     | 2                           |
|                                                                          | 06                                                                           |     |                             |

| UNIT NO.3 Filtration and drainage applications & Bearing                |    |   |
|-------------------------------------------------------------------------|----|---|
| capacity improvement                                                    |    |   |
| Geotextile filter mechanism, Filter criteria, Geotextile survivability, |    |   |
| Installation of Geotextile under riprap slope protection, Geotextile    | 03 | 3 |
| chimney drains                                                          |    |   |
| Reinforced soil bed, Mechanism, Modes offailure (Binquet and Lee        |    |   |
| theory), Results of Experimental Investigations for optimizing the      |    |   |
| parameters of reinforced soil bed, Bearing capacity ratio and its       | 04 | 3 |
| variation with various parameters                                       |    |   |
|                                                                         | 07 |   |
| UNIT NO.4 Reinforced retaining walls                                    |    |   |
| Applications, Advantages, Types, Components of reinforced soil wall,    |    |   |
| Types of facing units, Construction sequence of Geotextile reinforced   | 04 | 4 |
| wall and Geogrid soil wall,                                             |    |   |
| Failure mechanism and Analysis of reinforced retaining wall Design      |    |   |
| of Geotextile reinforced retaining wall - General consideration,        | 03 | 4 |
| Design procedure                                                        |    |   |
|                                                                         | 07 |   |
| UNIT NO.5 Reinforced soil embankments                                   |    |   |
| Applications, Advantages                                                | 02 | 5 |
| Containment systems using Geomembrane: advantages of using              | 06 | 5 |
| composite barrier for Liners and Covers, Single composite liner         |    |   |
| system for MSW landfill, Double composite liner system for HW           |    |   |
| landfil                                                                 |    |   |
|                                                                         | 08 |   |

| Reference       | es                                                                                     |                                                   |                                                                              |        |                  |                   |                       |  |  |
|-----------------|----------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|--------|------------------|-------------------|-----------------------|--|--|
| Applicable      | Name of                                                                                | Name of                                           | Name of                                                                      | Editio | Ca<br>teg<br>ory |                   |                       |  |  |
| for Unit<br>No. | Book                                                                                   | Author                                            | Publisher                                                                    | n      | Text<br>Book     | Research<br>paper | Refer<br>ence<br>book |  |  |
| 1,2,3           | Engineering<br>with<br>Geosynthetics                                                   | G.V.Rao and<br>G.V.S.S Raju                       | Tata-<br>McGraw Hill<br>Publication,<br>New Delhi                            | 2004   | Text<br>Book     | -                 | -                     |  |  |
| 1,2,3,          | Ground<br>Improvement<br>Techniques, P                                                 | Purusho<br>thams<br>Raj                           | Universit<br>y Science<br>Press, 1<br>st Ed.                                 | 2011   |                  |                   |                       |  |  |
| 1,2,3,4,5       | Geosynthetic<br>s.                                                                     | J. N.<br>Mandal,                                  | World,<br>New Age<br>Internationa<br>I Publishers<br>Pvt. Ltd., I<br>st Ed., | 2007   |                  |                   |                       |  |  |
| 1,2,3,4,5       | Constructio<br>n and<br>Geotechnical<br>Engineering<br>using<br>Synthetic<br>Fabrics,. | R.M.<br>Koerner and<br>J.P. Welsh,                | John Willey<br>and Sons,                                                     | 1980   |                  |                   |                       |  |  |
| 1,2,3           | Designing<br>with<br>Geosynthetic<br>s                                                 | R.M.<br>Koerner, 4th<br>edition,<br>PHI, 1997     | PHI                                                                          | 1997   |                  |                   |                       |  |  |
| 1,2,3           | Fundament<br>als of<br>Geosynthetic<br>Engineering                                     | Sanjay<br>Kumar<br>Shukla and<br>Jian-Hua<br>Yin, | ,Taylor and<br>Francis<br>Group<br>UK,                                       | 2002   |                  |                   |                       |  |  |
| 4               | Reinforced<br>Soil and its<br>Engineering<br>Applications,                             | Swami<br>Saran, 1st<br>edition                    | I. K.<br>Internationals                                                      | 2006   |                  |                   |                       |  |  |

|                            | List of<br>Code/Handbook                                                                                                   |                    |                              |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|--|--|--|--|--|--|
| Applicable<br>for Unit No. | Title of Code                                                                                                              | Type of code       | Year of<br>Publication       |  |  |  |  |  |  |
| 1                          | Indian Standard GLOSSARY OF TERMSFOR<br>GEOSYNTHETICS PART 1 TERMS USED<br>IN MATERIALS AND PROPERTIES                     | Indian<br>Standard | Februar<br>y 1992            |  |  |  |  |  |  |
| 2                          | Indian Standard GEOTEXTILES - METHODS<br>OF TEST PART 5 DETERMINATION OF<br>TENSILE PROPERTIES USING A WIDE<br>WIDTH STRIP | Indian<br>Standard | Feb<br>rua<br>ry<br>199<br>2 |  |  |  |  |  |  |

Censes 4. Ronde Allowell (Dr. A.N. Dashade) Bos Member

5\_20 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V                                                                | Total Hours Distribution per week                                        |                                                                    |            |           |        |             |  |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|------------|-----------|--------|-------------|--|--|--|
| Total Credit:03                                                       | Lecture (L): 3 Hrs                                                       | (L): 3 Hrs Tutorial/Activity (T/A): 3 Hrs. Practical (P): Nil Hrs. |            |           |        |             |  |  |  |
| Subject Code                                                          | BTCVE505T Name of Subject: Geo Environmental Engineering<br>(Elective-I) |                                                                    |            |           |        |             |  |  |  |
|                                                                       | Examination Scheme                                                       |                                                                    |            |           |        |             |  |  |  |
| Inte                                                                  | ernal Marks:                                                             |                                                                    | University | Minin     | num    | Examination |  |  |  |
|                                                                       |                                                                          |                                                                    | Marks:     | Passing I | Marks: | Duration:   |  |  |  |
| ,                                                                     | 30 Marks                                                                 |                                                                    |            |           |        |             |  |  |  |
| (15 Marks for sessional examination)<br>(15 Marks for Activity based) |                                                                          |                                                                    | 70 Marks   | 45 Ma     | arks   | 3 Hours     |  |  |  |

| Course Objective |                                                                                                                               |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1                | To create a awareness in the field of Geo-Environmental Engineering.                                                          |  |  |  |  |  |  |
| 2                | To impart the knowledge on Geotechnical aspects in the disposal of waste materials and the remediation of contaminated sites. |  |  |  |  |  |  |
| 3                | To familiarise design of landfill and know the effect of change in environment on soil properties.                            |  |  |  |  |  |  |
| 4                | Explain the effects of pollutants in soil properties.                                                                         |  |  |  |  |  |  |

| Course   | Course Outcome                                                                  |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| After co | mpletion of syllabus student able to                                            |  |  |  |  |  |  |
| 1        | Deal with geo-environmental engineering problems                                |  |  |  |  |  |  |
| 2        | Utilize waste in Geotechnical applications                                      |  |  |  |  |  |  |
| 3        | Design Landfill & Mange leachate and landfill gas                               |  |  |  |  |  |  |
| 4        | Do investigation on contaminated site and soil remediation                      |  |  |  |  |  |  |
| 5        | Assess variation in engineering properties of soil due to change in environment |  |  |  |  |  |  |

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO 1  | 2   | 2   | 2   | 1   | 1   | _   | _   | _   | 1   | 1    | 2    | 2    |
| CO 2  | 2   | 2   | 2   | 2   | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| CO 3  | 2   | 2   | 2   | 1   | 1   | -   | -   | _   | 1   | 1    | 2    | 2    |
| CO 4  | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| CO 5  | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |

1 Low

2 Medium

3 High

| Unit No.1                                                               |      |                             |    |
|-------------------------------------------------------------------------|------|-----------------------------|----|
| Details of Topic                                                        | Allo | Mapped<br>with CO<br>Number |    |
|                                                                         | L    | T/A                         | CO |
| Introduction and Soil-water-environment interaction :                   | 01   |                             |    |
| Introduction to geo-environmental Engineering,                          | 01   |                             |    |
| Soil-water-environment interaction relating to geotechnical problems,   | 01   |                             | 1  |
| Waste:-source, classification and management of waste,                  | 01   |                             |    |
| Physical, chemical and geotechnical characterization of municipal solid | 01   |                             |    |
| waste,                                                                  |      |                             |    |
| Impact of waste dump and its remediation                                | 01   |                             |    |
|                                                                         | 06   |                             |    |
| Unit No.2                                                               |      | I                           |    |
| Details of Topic                                                        | Allo | Mapped<br>with CO<br>Number |    |
|                                                                         | L    | T/A                         | СО |
| Geotechnical application of waste and disposal:                         | 01   |                             |    |
| Geotechnical use of different types such as Thermal power plant waste,  | 01   |                             |    |
| Municipal Solid Waste, mine waste,                                      | 01   |                             | 2  |
| Industrial waste.                                                       | 01   |                             |    |
| Waste disposal facilities,                                              | 01   |                             |    |

| Parameters controlling the selection of site for sanitary and industrial landfill.          | 01                       |              |                             |
|---------------------------------------------------------------------------------------------|--------------------------|--------------|-----------------------------|
| Site characterization. MoEF guidelines.                                                     | 01                       |              |                             |
|                                                                                             | 07                       |              |                             |
| Unit No.3                                                                                   | 1                        | 1            |                             |
| Details of Topic                                                                            | Allotment<br>of<br>Hours |              | Mapped<br>with CO<br>Number |
|                                                                                             | L                        | T/A          | CO                          |
| Landfill Components:Landfill layout and capacity, components of landfill and its functions. | 01                       |              |                             |
| Types and functions of liner and cover systems,.                                            | 01                       |              |                             |
| Compacted clay liner, selection of soil for liner, methodology of construction              | 02                       |              |                             |
| Leachate, Gas Management and Geosynthetics: Management of Leachate and                      | 02                       |              | 3                           |
| gas.                                                                                        |                          |              | · ·                         |
| Various components of leachate collection and removal system and its design.                | 01                       |              |                             |
| gas disposal/utilization. Closure and post closure monitoring system,                       |                          |              |                             |
| Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design                | 02                       |              |                             |
| aspects.                                                                                    |                          |              |                             |
| -                                                                                           | 09                       |              |                             |
| Unit No.4                                                                                   |                          |              |                             |
|                                                                                             | Alle                     | otment       | Mapped                      |
| Details of Topic                                                                            | of<br>Hours              |              | with CO<br>Number           |
|                                                                                             | L                        | T/A          | СО                          |
| Soil remediation: Investigation of contaminated soil, sampling, assessment.                 | 02                       |              |                             |
| Transport of contaminants in saturated soil                                                 | 01                       |              |                             |
| Remediation of contaminated soil- in-situ / exit remediation, bio remediation,              | 01                       |              |                             |
| thermal remediation, pump and treat method,                                                 | 01                       |              | 4                           |
| phyto remediation and electro-kinetic remediation                                           | 01                       |              | -                           |
|                                                                                             | 06                       |              |                             |
| Unit No.5                                                                                   | 06                       |              |                             |
|                                                                                             | 1 •                      |              | <b>.</b>                    |
| Details of Tarris                                                                           |                          | otment<br>of | Mapped<br>with CO           |
| Details of Topic                                                                            | H<br>L                   | ours         | Number                      |
|                                                                                             | L                        | T/A          | CO                          |
| Variation in Engineering properties of soil                                                 | 02                       | •            |                             |
|                                                                                             | 02                       |              | 5                           |
| Variation in Engineering properties of soil<br>atterberg limit, shear strength,             | 01                       |              | 5                           |
|                                                                                             |                          |              | 5                           |

|                 | References                                                                                                                          |                                           |                                    |         |              |                   |                   |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|---------|--------------|-------------------|-------------------|--|--|
| Applicable      | Name of Book                                                                                                                        | Name of                                   | Name of Publisher                  | Edition | Category     |                   |                   |  |  |
| for Unit<br>No. |                                                                                                                                     | Author                                    |                                    |         | Text<br>Book | Research<br>paper | Reference<br>book |  |  |
| 1               | Geoenvironmental<br>Engineering: Site<br>Remediation,<br>Waste<br>Containment, and<br>Emerging Waste<br>Management<br>Technologies, | Hari D.<br>Sharma,<br>Krishna R.<br>Reddy | John Wiley &<br>Sons Inc.          | 2004    |              |                   |                   |  |  |
| 2               | Geoenvironmental<br>Engineering:<br>Principles and<br>Applications                                                                  | Reddi L.N<br>and Inyang<br>HI             | Marcel Dekker<br>Inc Publication   | 2000    |              |                   |                   |  |  |
| 3               | Geoenvironmental<br>Engineering:<br>Contaminated<br>Soils, Pollutant<br>Fate                                                        | R. N. Yong,                               | Mitigation<br>Lewis<br>Publication | 2000    |              |                   |                   |  |  |
| 4               | Waste Disposal in<br>Engineered<br>landfills                                                                                        | Manoj Datta                               | Narosa<br>Publishing<br>House      | 1997    |              |                   |                   |  |  |



Ser 406 Or. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V                                                                                  | Total HoursDistribution per week |                                                   |                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|--------------------------|--|--|--|--|--|
| Total Credit: 3                                                                         | Lecture : 3 Hours                | Lecture : 3 Hours Tutorial//Activity(T/A): 0 Hrs  |                          |  |  |  |  |  |
| Subject Code                                                                            | BTCVE505T                        | Subject: Advanced Building Materials (Elective-I) |                          |  |  |  |  |  |
|                                                                                         | Examination Scheme               |                                                   |                          |  |  |  |  |  |
| Internal Marks                                                                          | 5- University                    | Minimum Passing Marks:                            | Examination<br>Duration: |  |  |  |  |  |
| 30 Marks<br>(15marks. for sessional<br>Examination)<br>(15 Marks for<br>Activity based) | 70 Marks                         | 45 Marks                                          | 3 Hrs                    |  |  |  |  |  |

| Course  | Course Objectives                                                                        |  |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| This co | ourse will enable students to                                                            |  |  |  |  |  |  |  |
| 1       | Understand composition and microstructure of various materials used in civil engineering |  |  |  |  |  |  |  |
|         | application.                                                                             |  |  |  |  |  |  |  |
| 2       | Understand the manufacturing and types of mortars.                                       |  |  |  |  |  |  |  |
| 3       | Understand engineering behavior of various materials.                                    |  |  |  |  |  |  |  |
| 4       | Understand the use of advanced materials in construction projects.                       |  |  |  |  |  |  |  |
| 5       | Understand the sustainable materials used in construction.                               |  |  |  |  |  |  |  |

| Course O   | Course Outcomes                                                                                           |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| After comp | After completion of syllabus, students would be able to                                                   |  |  |  |  |  |  |  |
| 1          | Understand the structural, physical and long term performance of building materials used in construction. |  |  |  |  |  |  |  |
| 2          | Understand special mortars and admixtures used in Civil engineering applications.                         |  |  |  |  |  |  |  |
| 3          | Understand the properties of Ceramic materials in construction projects.                                  |  |  |  |  |  |  |  |
| 4          | Understand the uses of polymeric materials in construction.                                               |  |  |  |  |  |  |  |
| 5          | Understand green building concept and materials.                                                          |  |  |  |  |  |  |  |

|        |     |     |     | Low 2Medium |     |     |     | 3H  | igh |      |      |      |
|--------|-----|-----|-----|-------------|-----|-----|-----|-----|-----|------|------|------|
| AVG.   | 2   | 2   | 2   | 1.4         | 1   | -   | -   | -   | 1   | 1.4  | 2    | 2    |
| CO5    | 2   | 2   | 2   | 1           | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| C 04   | 2   | 2   | 2   | 1           | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| C 03   | 2   | 2   | 2   | 1           | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| C 02   | 2   | 2   | 2   | 2           | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| C 01   | 2   | 2   | 2   | 2           | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| CO/ P0 | PO1 | PO2 | PO3 | PO4         | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |

#### U

| Details of Topic                                                                                                                                                                   | Allo<br>ils of Topic ntof<br>Hou |     | Mapped<br>with<br>CONu<br>mber |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|--------------------------------|--|
|                                                                                                                                                                                    | L                                | T/A | со                             |  |
| UNIT NO.1(CONSTRUCTION MATERIALS)                                                                                                                                                  |                                  |     |                                |  |
| a) Classifications of Construction Materials.                                                                                                                                      | 01                               |     | 1                              |  |
| b) Consideration of physical, Mechanical, thermo-physical<br>Properties, Characteristics behaviour under stress.                                                                   | 03                               |     | 1                              |  |
| c) Selection criteria for construction materials, waste products, reuse and recycling.                                                                                             | 03                               |     | 1                              |  |
|                                                                                                                                                                                    | 07                               |     |                                |  |
| UNIT NO.2(MATERIALS FOR MAKING MORTAR AND CONCRETE)                                                                                                                                |                                  |     |                                |  |
| a)Lime manufacture, properties, hardening of lime, types of lime,<br>lime concrete uses, cement, aggregates, water, characteristics,<br>properties and uses of Pozzolana materials |                                  |     | 2                              |  |
| b) Types of mortars, special mortars, properties and applications, admixtures                                                                                                      | 03                               |     | 2                              |  |
|                                                                                                                                                                                    | 06                               |     |                                |  |

| UNIT NO.3 (CERAMIC MATERIALS)                                                                                        |    |   |
|----------------------------------------------------------------------------------------------------------------------|----|---|
| a)Classification, Refractories, glass, glass wool.                                                                   | 02 | 3 |
| b) Mechanical, thermal and electrical properties                                                                     | 03 | 3 |
| c)Fire resistance materials, Uses and application.                                                                   | 03 | 3 |
|                                                                                                                      | 08 |   |
| UNIT NO.4 (POLYMERIC MATERIALS AND STEEL)                                                                            |    |   |
| a) Polymerization mechanism and depolymerisation.                                                                    | 02 | 4 |
| b)Rubber and plastics, properties, effect of temperature on mechanical properties. Uses and application.             | 03 | 4 |
| c) Types of structural steels, special steel, alloy steel, stainless steel, light gauge steel.                       | 02 | 4 |
|                                                                                                                      | 07 |   |
| UNIT NO.5 (SUSTAINABLE MATERIALS)                                                                                    |    |   |
| a)Green concepts in buildings, Green building materials ,Green<br>building ratings IGBC and LEED manuals – mandatory | 04 | 5 |
| requirements.                                                                                                        |    |   |
| b)Rainwater harvesting &solar passive architecture. Environmental                                                    | 03 | 5 |
| friendly and cost effective building technologies, Requirements for                                                  |    |   |
| buildings of different climatic regions.                                                                             |    |   |
|                                                                                                                      | 07 |   |

| References   |                          |               |                        |         |              |                       |                       |
|--------------|--------------------------|---------------|------------------------|---------|--------------|-----------------------|-----------------------|
| Applicable   | Name of                  | Name of       | Name of                | Edition | Category     |                       |                       |
| for Unit No. | Book                     | Author        | Publisher              |         | Text<br>Book | Researc<br>h<br>paper | Referenc<br>e<br>book |
| 1&2          | Engineering<br>Materials | Rangwala S.C. | Chortor<br>Publication | 1991    | TextBoo<br>k |                       |                       |

٦

Г

| 3&4 | Building<br>Material                                                                          |              | New Age<br>International<br>Publication | 2006 | Textbook |  |
|-----|-----------------------------------------------------------------------------------------------|--------------|-----------------------------------------|------|----------|--|
| 5   | The ideas of<br>green<br>building                                                             | A.K.Jain     | Khanna<br>publisher                     |      | Textbook |  |
| 2&3 | Building<br>Materials<br>Technology<br>Structural<br>Performance &<br>Environmental<br>Impact | Bruntley L.R | McGraw Hill<br>Inc                      | 1995 | Textbook |  |

Enster G. Ronde Allowella (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman De

### It • f

| Sem: V             | Total Hours Distribution per week     |                 |                                                      |                       |  |  |  |  |  |
|--------------------|---------------------------------------|-----------------|------------------------------------------------------|-----------------------|--|--|--|--|--|
| Total Credit: 03   | Lecture (L): 3 Hrs.                   | Tutorial/Activi | ty (T/A): 0 Hrs.                                     | Practical (P): 0 Hrs. |  |  |  |  |  |
| Subject Code       | BTCVE505T                             | Name of Subje   | Name of Subject: Ground Water Hydrology (Elective-I) |                       |  |  |  |  |  |
| Examination Scheme |                                       |                 |                                                      |                       |  |  |  |  |  |
| Interna            | l Marks:                              | University      | Minimum Pass                                         | sing Examination      |  |  |  |  |  |
|                    |                                       | Marks:          | Marks:                                               | Duration:             |  |  |  |  |  |
| 30 N               | Aarks                                 |                 |                                                      |                       |  |  |  |  |  |
|                    | ional Examination)<br>Activity based) | 70 Marks        | 45 Marks                                             | 3 Hours               |  |  |  |  |  |

| Course | Objective                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | To equip the students with capabilities required to explain groundwater occurrences, aquifer classification and aquifer properties in the many different geological environments. |
| 2      | Carrying out comprehensive hydrological flow systems analysis in groundwater systems.                                                                                             |
| 3      | Performing detailed groundwater balances, interpreting and working with the concepts of groundwater recharge, storage, and discharge.                                             |
| 4      | Knowledge of the steady-state and transient groundwater flow processes and their physical description.                                                                            |
| 5      | Application of analytical solutions to solve the groundwater management problems.                                                                                                 |

| Course Outcome |                                                                                                 |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| After co       | ompletion of syllabus student able to                                                           |  |  |  |  |  |
| 1              | Define groundwater and its occurrences, classify the aquifers and illustrate aquifer properties |  |  |  |  |  |
| 2              | Analyse the comprehensive hydrological flow systems in groundwater systems                      |  |  |  |  |  |
| 3              | Perform detailed groundwater balances, interpreting and working with the concepts of            |  |  |  |  |  |
|                | groundwater recharge, storage, and discharge                                                    |  |  |  |  |  |
| 4              | Interpret the steady-state and transient groundwater flow processes and their physical          |  |  |  |  |  |
|                | description                                                                                     |  |  |  |  |  |
| 5              | Solve the groundwater management problems                                                       |  |  |  |  |  |

| CO/PO         | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | Р |
|---------------|------------|-----|-----|-----|-----|------------|------------|-----|-----|------|------|---|
| BECVE505T CO1 |            | 3   |     |     |     |            |            |     |     |      |      | 2 |
| BECVE505T CO2 |            | 3   | 3   | 1   |     |            |            |     |     |      |      | 2 |
| BECVE505T CO3 |            | 2   | 3   | 1   |     |            |            |     |     |      |      | 2 |
| BECVE505T CO4 |            | 3   | 2   |     |     |            |            |     |     |      |      | 2 |
| BECVE505T CO5 |            | 2   | 1   |     |     |            |            |     |     |      |      | 2 |

1 Low

3 High

### SYLLABUS

2 Medium

| Unit No.1                                                                                                                                                             |    |                             |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|-----------------------------------|
| Details of Topic Introduction:                                                                                                                                        |    | otment<br>of<br>ours        | Mapped<br>with CO<br>Number       |
|                                                                                                                                                                       | L  | T/A                         | CO                                |
| Ground water utilization & historical background, Role of groundwater<br>in the hydrologic cycle, problems and perspectives, groundwater                              | 02 |                             | 1                                 |
| resources status in India, ground water budget.                                                                                                                       |    |                             |                                   |
| Occurrence and movement of groundwater, Origin & age of ground<br>water, rock properties affecting groundwater, groundwater column,<br>zones of aeration & saturation | 02 |                             | 1                                 |
| Aquifers and their characteristics/classification, groundwater basins & springs,                                                                                      | 02 |                             | 1                                 |
| Darcy's Law, permeability & its determination, Dupuit's equation with assumptions, heterogeneity & anisotropy,                                                        | 02 |                             | 1                                 |
|                                                                                                                                                                       | 08 |                             |                                   |
| Unit No.2                                                                                                                                                             |    |                             |                                   |
| <b>Details of Topic:</b> Well Hydraulics:                                                                                                                             |    | otment<br>of<br>ours<br>T/A | Mapped<br>with CO<br>Number<br>CO |
|                                                                                                                                                                       | 01 | 1/A                         | 2                                 |
| Types of wells, methods of construction, tube well design, dug wells, pumps for lifting water, working principles, power requirement,                                 | 01 |                             | 2                                 |
| Steady Flow, Radial flow in confined and unconfined aquifers, pumping test                                                                                            | 02 |                             | 2                                 |
| Unsteady Flow, General equation, derivation; thesis method, Cooper<br>and Jacob method, Chow's method                                                                 | 02 |                             | 2                                 |
| Leaky aquifers (only introduction), interference of well, image well theory.                                                                                          | 02 |                             | 2                                 |
|                                                                                                                                                                       | 07 |                             |                                   |

| Details of Topic: Surface and Subsurface investigations of                                                                                                                               |    | otment<br>of<br>lours | Mapped<br>with CO<br>Number |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------|-----------------------------|
| Groundwater:                                                                                                                                                                             | L  | T/A                   | СО                          |
| Geologic methods, remote sensing, geophysical exploration,                                                                                                                               | 01 |                       | 3                           |
| Electrical resistivity and seismic refraction, logging techniques, test drilling & ground water level measurement                                                                        | 02 |                       | 3                           |
| ARTIFICIAL GROUND WATER RECHARGE: Concept & methods of artificial ground water recharge,                                                                                                 | 02 |                       | 3                           |
| Recharge mounds & induced recharge, wastewater recharge for reuse, water spreading.                                                                                                      | 01 |                       | 3                           |
|                                                                                                                                                                                          | 06 |                       |                             |
| Unit No.4                                                                                                                                                                                | 1  |                       |                             |
| <b>Details of Topic:</b> POLLUTION AND QUALITY ANALYSIS OF<br>GROUND WATER                                                                                                               | Н  | otment<br>of<br>lours | Mapped<br>with CO<br>Number |
|                                                                                                                                                                                          | L  | T/A                   | CO                          |
| Municipal /industrial /agricultural /miscellaneous sources & causes of pollution,                                                                                                        | 02 |                       | 4                           |
| Attenuation/ underground distribution / potential evaluation of pollution, physical /chemical /biological analysis of ground water quality, criteria & measures of ground water quality, | 03 |                       | 4                           |
| Ground water salinity & samples, graphical representations of ground water quality.                                                                                                      | 03 |                       | 4                           |
| Ground Water Development: Conjunctive use, necessity, techniques and economics.                                                                                                          | 02 |                       | 4                           |
|                                                                                                                                                                                          | 10 |                       |                             |
| Unit No.5                                                                                                                                                                                |    |                       |                             |
| Details of Topic : Modelling and Management of Groundwater:                                                                                                                              |    | otment<br>of<br>lours | Mapped<br>with CO<br>Number |
|                                                                                                                                                                                          | L  | T/A                   | СО                          |
| Ground water modelling through porous media /analog / electric analog / digital computer models,                                                                                         | 03 |                       | 5                           |
| Ground water basin management concept, hydrologic equilibrium equation, ground water basin investigations                                                                                | 02 |                       | 5                           |
| Data collection & field work, dynamic equilibrium in natural aquifers,<br>management potential & safe yield of aquifers, stream-aquifer<br>interaction.                                  | 03 |                       | 5                           |
|                                                                                                                                                                                          | 08 |                       |                             |

|                 |              |                | References        |         |              |                   |                   |  |
|-----------------|--------------|----------------|-------------------|---------|--------------|-------------------|-------------------|--|
| Applicable      | Name of Book | Name of Author | Name of Publisher | Edition |              | Category          |                   |  |
| for Unit<br>No. |              |                |                   |         | Text<br>Book | Research<br>paper | Reference<br>book |  |
| 1               | Ground Water | H.M.           | Wiley Eastern     |         | Yes          |                   |                   |  |
|                 |              | Raghunath      | Publication, New  |         |              |                   |                   |  |
|                 |              |                | Delhi             |         |              |                   |                   |  |
| 2 to 5          | Ground Water | K. Todd        | Wiley and Sons,   |         | Yes          |                   |                   |  |
|                 | Hydrology    |                | New Delhi.        |         |              |                   |                   |  |
| 2 to 5          | Ground Water | Bower. H.      | McGraw Hill,      |         |              |                   | Tes               |  |
|                 | Hydrology    |                | New Delhi         |         |              |                   |                   |  |

Center G. Ronde

Aller (Dr. A.N. Dabhade) Bos Member

-22 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V                               | ſ                  | Total Hours Distribution per week                |            |      |                   |  |  |
|--------------------------------------|--------------------|--------------------------------------------------|------------|------|-------------------|--|--|
| Total Credit: 3                      | Lecture (L): 3 Hrs | Tutorial/Activity (T/A): 0<br>Hrs                |            |      | tical (P) : 0 Hrs |  |  |
| Subject Code:                        | BTCVE505T          | Name of Subject: Advanced Surveying (Elective-I) |            |      |                   |  |  |
|                                      | Examination Scheme |                                                  |            |      |                   |  |  |
| Tertore                              | al Marlar          | University                                       | Minimum    |      | Examination       |  |  |
| Intern                               | nal Marks:         | Marks:                                           | Passing Ma | rks: | <b>Duration:</b>  |  |  |
| 30                                   | Marks              |                                                  |            |      |                   |  |  |
| (15 Marks for sessional examination) |                    | 70 Marks 45 Mark                                 |            | s    | 3 Hours           |  |  |
| (15 Marks for Activity based)        |                    |                                                  |            |      |                   |  |  |

| Course | Course Objective                                                                 |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1      | To impart knowledge of Advanced surveying methods.                               |  |  |  |  |  |  |
| 2      | Develop skill to use advance surveying instruments and analyse data              |  |  |  |  |  |  |
| 3      | Understand different errors and elimination of errors                            |  |  |  |  |  |  |
| 4      | To make aware of the use of modern surveying instruments for real life problems. |  |  |  |  |  |  |

| Course   | Course Outcome                                                                         |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| After co | After completion of syllabus student able to                                           |  |  |  |  |  |  |
| 1.       | Understand Remote Sensing, terms involved in Remote Sensing and its applications.      |  |  |  |  |  |  |
| 2.       | Apply drone and LiDAR technology for surveying                                         |  |  |  |  |  |  |
| 3.       | Process digital images and interpret images using different tools.                     |  |  |  |  |  |  |
| 4.       | Understand Geographical concepts and terminology involved in GIS and its Applications. |  |  |  |  |  |  |
| 5.       | Handle GPS and DGPS for surveying                                                      |  |  |  |  |  |  |

| CO/PO | PO1 | PO2 | PO3   | PO4 | PO5  | PO6  | PO7 | PO8          | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-------|-----|------|------|-----|--------------|-----|------|------|------|
| CO1   | 3   | 2   | 2     | 1   | 3    | -    | -   | -            | -   | 1    | -    | 1    |
| CO2   | 3   | 2   | 2     | 1   | 3    | -    | -   | -            | -   | -    | -    | 1    |
| CO3   | 2   | 2   | 2     | 1   | 2    | -    | -   | -            | -   | 1    | -    | 1    |
| CO4   | 3   | 2   | 2     | 1   | 3    | -    | -   | -            | -   | -    | -    | 1    |
| CO5   | 3   | 2   | 2     | 1   | 3    | -    | -   | -            | -   | -    | -    | 1    |
|       |     | 1   | 1 Low |     | 2 Me | dium |     | <b>3 H</b> i | igh |      |      |      |

| Unit No.1 Remote Sensing                                                                                  |                          |                      |                             |
|-----------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|
| Details of Topic                                                                                          |                          | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                                                           | L                        | T/A                  | СО                          |
| Introduction and definition of remote sensing terms, remote sensing system, principles of remote sensing, | 02                       |                      | 1                           |
| Interaction of EMR, Fundamentals of aerial photography, platforms and orbits,                             | 02                       |                      | 1                           |
| Sensors,data products, principles of visual interpretation, principles and uses;                          | 02                       |                      | 1                           |
| Thermal remote sensitize, microwave remote sensing.                                                       | 02                       |                      | 1                           |
|                                                                                                           | 08                       |                      |                             |
| Unit No.2 UAV Drone & LiDAR                                                                               |                          |                      |                             |
| Details of Topic                                                                                          | Allotment<br>of<br>Hours |                      | Mapped<br>with CO<br>Number |
|                                                                                                           | L                        | T/A                  | СО                          |
| Types of Drone and its applications                                                                       | 01                       |                      | 2                           |
| LiDAR Techniques and its types                                                                            | 02                       |                      | 2                           |
| Application of Drone Technology for large area mapping                                                    | 02                       |                      | 2                           |
| Generation of 3D data from Drone/LiDAR and preparation of DSM,DTM and detailed contour maps               | 03                       |                      | 2                           |
|                                                                                                           | 08                       |                      |                             |

| Details of Topic                                                                                          |    | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|-----------------------------------------------------------------------------------------------------------|----|----------------------|-----------------------------|
|                                                                                                           | L  | T/A                  | CO                          |
| Principles of interpretation of aerial and satellite images,                                              | 02 |                      | 3                           |
| Equipments and aids required for interpretation,                                                          | 02 |                      | 3                           |
| Ground truth collection and verification, advantages of multi date and multi band images,                 | 02 |                      | 3                           |
| Digital image processing; introduction, image enhancementtechniques, digital image classification.        | 02 |                      | 3                           |
|                                                                                                           | 08 |                      |                             |
| Unit No.4 Geographic Information System (GIS)                                                             |    |                      |                             |
| Details of Topic                                                                                          |    | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                                                           | L  | T/A                  | CO                          |
| Geographic Information System (GIS)- Definition of GIS, Geographical concepts and terminology             | 02 |                      | 4                           |
| Components of GIS, Data acquisition, Raster and vector formats, scanners and digitizers.                  | 03 |                      | 4                           |
| Advantages of GPS and GIS in the storage of the matic information<br>extracted from remotely sensed image | 03 |                      | 4                           |
|                                                                                                           | 08 |                      |                             |
| Unit No.5 Global Positioning System (GPS) & Differential GPS                                              |    |                      |                             |
| Details of Topic                                                                                          |    | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                                                           | L  | T/A                  | СО                          |
| Introduction to navigation and positioning Geodesy;                                                       | 01 |                      | 5                           |
| Geospatial reference systems, overview of GPS;                                                            | 01 |                      | 5                           |
| DGPS Techniques Post Process Kinematic and Real Time Kinematic technique.                                 | 02 |                      | 5                           |
| DGPS Triangulation and closing techniques                                                                 | 02 |                      | 5                           |
| Advance DGPS applications                                                                                 | 02 |                      | 5                           |
|                                                                                                           | 08 |                      |                             |

|                 |                                                              |                                           | References |         |              |                   |                   |
|-----------------|--------------------------------------------------------------|-------------------------------------------|------------|---------|--------------|-------------------|-------------------|
| Applicable      |                                                              | Name of                                   | Name of    |         |              | Categor           | у                 |
| for Unit<br>No. | Name of Book                                                 | Author                                    | Publisher  | Edition | Text<br>Book | Research<br>paper | Reference<br>book |
| I               | Remote Sensing<br>and Geographical<br>Information<br>Systems | M. Anji Reddy                             |            |         | Y            |                   |                   |
| I,III,<br>IV, V | Advanced<br>Surveying: Total<br>Station, GPS,                | GopiSatheesh,<br>R.Sathikumar,<br>N Madhu | Pearson    | 2017    | Y            |                   |                   |

|    | GIS & Remote<br>Sensing                                                  |                                    |                           |                 |   |   |
|----|--------------------------------------------------------------------------|------------------------------------|---------------------------|-----------------|---|---|
| II | Fundamentals of<br>Capturing and<br>Processing Drone<br>Imagery and Data | Amy E Frazier,<br>Kumar K<br>Singh | CRC Press                 |                 |   | Y |
| IV | Concepts and<br>techniques of<br>Geographic<br>Information<br>Systems.   | - C.P LO<br>Albert KW<br>Yeung,    | Pritince Hall of<br>India | Edition<br>2002 | Y |   |

Censes 4: Ronde

Ser 4000

(Dr. A.N. Dabhade) Bos Member

43-2 (Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) Chairman

| Sem: V                                                                | Total Hours Distribution per week 3-0-0 |                                                             |                                                             |         |             |  |  |
|-----------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------|-------------|--|--|
| Total Credit: 03                                                      | Lecture (L): 03 Hrs                     | Tutorial/Activity (7                                        | Tutorial/Activity (T/A): 0 Hrs.       Practical (P): 0 Hrs. |         |             |  |  |
| Subject Code                                                          | BTCVE506T                               | Name of Subject: Advanced Concrete Structure ( Elective-II) |                                                             |         |             |  |  |
|                                                                       | Examination Scheme                      |                                                             |                                                             |         |             |  |  |
| Intern                                                                | Internal Marks:                         |                                                             | Minimum                                                     | Passing | Examination |  |  |
|                                                                       |                                         |                                                             | Marks:                                                      |         | Duration:   |  |  |
| 30 Marks                                                              |                                         |                                                             |                                                             |         |             |  |  |
| (15 Marks for sessional examination)<br>(15 Marks for Activity based) |                                         | 70 Marks                                                    | 45 Marks                                                    |         | 04 Hours    |  |  |

| Course | Objective                                                                        |
|--------|----------------------------------------------------------------------------------|
| 1      | To understand the design concepts and learning various codes related to advanced |
|        | reinforced concrete structure.                                                   |
| 2      | To understand the structural behavior of steel and concrete.                     |
| 3      | To apply conventional methods for design structural components of building.      |

| Course   | Course Outcome                                                                              |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| After co | After completion of syllabus student able to                                                |  |  |  |  |  |  |
| 1        | 1 Understand the behaviour and failure modes of different RC structural members             |  |  |  |  |  |  |
| 2        | Analyze and apply the results in designing various RC structural members.                   |  |  |  |  |  |  |
| 3        | Apply the knowledge and skills in practical problems                                        |  |  |  |  |  |  |
| 4        | Understand the relevant software and use the same in the analysis and design of RC members. |  |  |  |  |  |  |

| CO/PO                      | PO1 | PO2 | PO3 | PO4 | PO5   | PO6  | <b>PO7</b> | PO8  | <b>PO9</b> | <b>PO10</b> | PO11 | PO12 |
|----------------------------|-----|-----|-----|-----|-------|------|------------|------|------------|-------------|------|------|
| Subject<br>Code &CO<br>NO. |     |     |     |     |       |      |            |      |            |             |      |      |
| CO1                        | 3   | 3   | 3   | -   | -     | -    | -          | -    | -          | 2           | -    | 3    |
| CO2                        | 3   | 3   | 3   | -   | -     | -    | -          | -    | -          | 2           | -    | 3    |
| CO3                        | 3   | 3   | 3   | -   | -     | -    | -          | -    | -          | 2           | -    | 3    |
| CO4                        | 3   | 3   | 3   | -   | -     | -    | -          | -    | -          | 2           | -    | 3    |
| Avg CO                     | 3   | 3   | 3   | -   | -     | -    | -          | -    | -          | 2           | -    | 3    |
|                            |     | 1   | Low |     | 2 Med | lium |            | 3 Hi | gh         |             |      |      |

| Details of Topic                                                       |    | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|------------------------------------------------------------------------|----|----------------------|-----------------------------|
|                                                                        | L  | T/A                  | СО                          |
| Design of RC columns subjected to biaxial moments.                     | 09 |                      |                             |
| Design of Isolated footing, for axial load & uniaxialmoment.(square,   |    |                      | 1                           |
| rectangular footing)                                                   |    |                      |                             |
|                                                                        | 09 |                      |                             |
| Unit No.2                                                              | 1  |                      |                             |
| Design of circular water tank resting on ground by IS code method (IS  | 09 |                      |                             |
| 3370:2021). Design of Dog-legged and Open well Staircase               |    |                      | 2                           |
|                                                                        | 09 |                      |                             |
| Unit No.3                                                              |    |                      |                             |
| Design of RCC Cantilever and Counter fort Retaining wall.              | 09 |                      |                             |
|                                                                        |    |                      | 3                           |
|                                                                        | 09 |                      |                             |
| Unit No.4                                                              | •  |                      |                             |
| Analysis and design of portal frames (single bay single storey) hinged | 09 |                      |                             |
| or fixed at base. Design of hinge connection at base                   |    |                      |                             |
| Design of combined footing. Rectangular / Trapezoidal.                 |    |                      | 4                           |
|                                                                        | 09 |                      |                             |

- 1. DevdasMenon, Structural Analysis, Narosa Publishing House, 2008. (ISBN: 9781842653371)
- 2. Hibbeler, R. C. (2002). Structural Analysis, 6/e, Pearson Education
- 3. Norris, C.H., Wilbur, J.B., and Utku, S., Elementary Structural Analysis, McGraw Hill
- 4. Wang, C.K., Intermediate Structural Analysis, McGraw Hill, 1983

|                            | List of Code/Handbook |              |                     |  |  |  |  |  |  |
|----------------------------|-----------------------|--------------|---------------------|--|--|--|--|--|--|
| Applicable<br>for Unit No. | Title of Code         | Type of code | Year of Publication |  |  |  |  |  |  |
| All                        | IS 459-2000           |              | 2000                |  |  |  |  |  |  |
| All                        | SP-16                 |              |                     |  |  |  |  |  |  |

Custes 4. Ronde

(Dr. A.N. Dabhade) BOS Memb

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V             | Total Hours Distribution per week         |                                               |            |       |                  |  |  |  |
|--------------------|-------------------------------------------|-----------------------------------------------|------------|-------|------------------|--|--|--|
| Total Credit: 3    | Lecture (L): 3 Hrs                        | Tutorial/Activity: 0 Hrs Practical (P): 0 Hrs |            |       |                  |  |  |  |
| Subject Code       | BTCVE506T                                 | Name of Subject: Earth Retaining Structures   |            |       |                  |  |  |  |
|                    |                                           | (Elective-II)                                 |            |       |                  |  |  |  |
| Examination Scheme |                                           |                                               |            |       |                  |  |  |  |
| Intern             | al Marks:                                 | University                                    | Minimu     | m     | Examination      |  |  |  |
|                    |                                           | Marks:                                        | Passing Ma | arks: | <b>Duration:</b> |  |  |  |
| 30                 | Marks                                     |                                               |            |       |                  |  |  |  |
|                    | ssional Examination)<br>r Activity based) | 70 Marks                                      | 45 Mark    | KS .  | 3 Hours          |  |  |  |

| Course | Objective                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------|
| 1      | To know the in-depth knowledge of various failures mechanism related to earth retaining structures. |
| 2      | To understand the types of retaining wall, stability of retaining walls.                            |
| 3      | To understand sheet pile and cofferdam, method of construction and distribution of earth pressure.  |
| 4      | To understand the historical failures of geotechnical structures.                                   |
| 5      | To understand the effect of water table on slopes.                                                  |

| Course                                       | Course Outcome                                                                                                           |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| After completion of syllabus student able to |                                                                                                                          |  |  |  |  |  |  |
| 1                                            | Think logically for mechanism of earth retaining structures.                                                             |  |  |  |  |  |  |
| 2                                            | Differentiate different types of retaining wall and Understand the engineering concepts of stability of retaining walls. |  |  |  |  |  |  |
| 3                                            | Understand about sheet pile and cofferdam and best suitable techniques for construction.                                 |  |  |  |  |  |  |
| 4                                            | Gain an experience in from historical failures of geotechnical structures.                                               |  |  |  |  |  |  |
| 5                                            | Gain the knowledge of effect of water table on slopes.                                                                   |  |  |  |  |  |  |

| CO/PO | PO1 | PO2 | PO3   | PO4  | PO5   | PO6  | PO7 | PO8   | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-------|------|-------|------|-----|-------|-----|------|------|------|
| CO1   | 2   | 3   | 2     | -    | -     | 1    | 1   | 1     | 1   | -    | -    | 2    |
| CO2   | 2   | 2   | 2     | 2    | -     | 1    | 1   | 1     | 1   | 1    | 2    | 2    |
| CO3   | 3   | 3   | 2     | 2    | 1     | 1    | 1   | 1     | 2   | 1    | 1    | 2    |
| CO4   | 3   | 3   | 2     | 1    | -     | 1    | 1   |       | -   |      | -    | 2    |
| CO5   | 1   | 2   | 2     | -    | -     | -    |     | -     | -   | -    | -    | 2    |
| Avg   | 2.2 | 2.6 | 2     | 1.67 | 1     | 1    | 0.8 | 1     | 1.3 | `    | 1.5  | 2    |
|       | •   |     | l Low | •    | 2 Mec | lium |     | 3 Hig | h   |      | •    | •    |

| Details of Topic                                                   | Allot<br>0<br>Ho | f   | Mapped<br>with CO<br>Number |
|--------------------------------------------------------------------|------------------|-----|-----------------------------|
|                                                                    | L                | T/A | СО                          |
| UNIT NO.1 Earth Pressure Theories                                  |                  |     |                             |
| Theories of earth pressure, general and local states of plastic    | 01               |     | 1                           |
| equilibrium,                                                       |                  |     |                             |
| Active and Passive states in cohesive and cohesion less soil,      | 03               |     | 1                           |
| Rankine's and Coulomb's approaches,                                |                  |     |                             |
| Effect of wall movement, uniform surcharge, wall angle, wall       | 03               |     | 1                           |
| friction, back fill slope. Lateral pressure on wall due to         |                  |     |                             |
| concentrated construction, Culmanns method, earth pressure         |                  |     |                             |
| at rest.                                                           |                  |     |                             |
| Introduction to seismic design of retaining wall.                  | 01               |     | 1                           |
|                                                                    | 08               |     |                             |
| UNIT NO.2 Stability of Earth Retaining Structures                  |                  |     |                             |
| Types of retaining wall, stability analysis of rigid type and R.C. | 03               |     | 2                           |
| Cantilever type retaining walls.                                   |                  |     |                             |
| Introduction of Geo reinforce Wall, Gabion Wall, Soil Nailing.     | 03               |     | 2                           |
|                                                                    | 06               |     |                             |

| References                                                                                                                                                                                                                                                                                                                       |      |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| UNIT NO.3 Sheet Pile and Cofferdam                                                                                                                                                                                                                                                                                               |      |   |
| Sheet pile and cofferdam. Type, material, method o construction.                                                                                                                                                                                                                                                                 | f 02 | 3 |
| Distribution of earth pressure and related approximation.<br>Distinction between Sheet Pile and Retaining Wall, Analysis<br>and Design.                                                                                                                                                                                          | 05   | 3 |
|                                                                                                                                                                                                                                                                                                                                  | 07   |   |
| UNIT NO.4 Characterization of failures & Stability Of<br>Slopes                                                                                                                                                                                                                                                                  | f    |   |
| Historical Failures of geotechnical structures(finite and infinite slopes, high embankments such as earthen dams, tunnels, excavations, Rockfall, landslides and retaining structures etc.,)                                                                                                                                     | 03   | 4 |
| Stability Of Slopes- Causes and types of slope failure, stability<br>analysis of infinite slopes and finite slopes, center of critical<br>slip circle, slices method and friction circle. Slopes with pore<br>pressure consideration. Taylor's stability numbers & stability<br>charts, method of improving stability of slopes. | 04   | 4 |
|                                                                                                                                                                                                                                                                                                                                  | 07   |   |
| UNIT NO.5 Effect of water table on slopes                                                                                                                                                                                                                                                                                        |      |   |
| Effect of water table on slopes, tension cracks, Stability of earth dams during different stages-during and at end of construction.                                                                                                                                                                                              | 04   | 5 |
| Steady seepage, Sudden draw down, estimation of pore water pressure, Use of stability charts.                                                                                                                                                                                                                                    | 04   | 5 |
|                                                                                                                                                                                                                                                                                                                                  | 08   |   |

| Applicable      | Name of                                                          | Name of                         | Name of                                            |         |              | Category          | 7                 |
|-----------------|------------------------------------------------------------------|---------------------------------|----------------------------------------------------|---------|--------------|-------------------|-------------------|
| for Unit<br>No. | Book                                                             | Author                          | Publisher                                          | Edition | Text<br>Book | Research<br>paper | Reference<br>book |
| 1,2,3,4,5       | Basic and<br>Applied Soil<br>Mechanics                           | Gopal Ranjan<br>and Rao         | New Age<br>Internation<br>al<br>Publisher          | 2005    | Text<br>Book |                   |                   |
| 1,2,3,4,5       | Principles of<br>Geotechnical<br>Engineering                     | Das<br>B.M.                     | Thomso<br>n Bksm<br>Cengag<br>e<br>Publicat<br>ion | 2002    | Text<br>Book |                   |                   |
| 1,2,3,4,5       | Soil<br>Mechanics<br>and<br>Foundation<br>Engineerin<br>g, Vol-I | VNS Murthy                      | Saikripa<br>Consultan,<br>Banglore                 | 1991    | Text<br>Book |                   |                   |
| 1,2,3,4,5       | Foundation<br>Engineering<br>Handbook                            | Winterkon<br>H.F. and<br>Fang H |                                                    |         |              |                   | Reference<br>Book |

|                 | List of                                                                                                                      |                    |                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
|                 | Code/Handbook                                                                                                                |                    |                 |
| Applicable      | Title of                                                                                                                     | Type of            | Year of         |
| for Unit<br>No. | Code                                                                                                                         | code               | Publication     |
| 1               | Indian Standard Ports And Harbours -<br>Plasning And Design - Code Of Practice<br>Part 2 Earth Pressures<br>(First Revision) | Indian<br>Standard | Reaffirmed 2005 |
| 2               | Indian Standard. Retaining Wall For Hill<br>Area - Guidelines Part 2 Design Of<br>Retaining/Breast Walls                     | Indian<br>Standard | October 1997    |
| 3               | Indian Standard Safety Code For Piling<br>And Other Deep Foundations                                                         | Indian<br>Standard | August 1969     |
| 4               | IndianStandardSelectionAndDevelopmentOf SiteFor BuildingIn HillAreas - GuidelinesPart 2 SelectionAndDevelopment.             | Indian<br>Standard | March 1995      |

| Applicable for | Website address                                                           |
|----------------|---------------------------------------------------------------------------|
| Unit No.       |                                                                           |
| 1              | https://nptel.ac.in/content/storage2/courses/105101083/download/lec7.pdf  |
| 2              | https://nptel.ac.in/content/storage2/courses/105101083/download/lec26.pdf |
| 3              | https://documents.pub/document/advanced-foundation-engineering nptelacin- |
| 5              | 3-chapter-5-sheet-pile-wall-51.html                                       |
| 4              | https://nptel.ac.in/content/storage2/courses/105101001/downloads/L22.pdf  |
| 5              | https://nptel.ac.in/content/storage2/courses/105101001/downloads/L22.pdf  |



Andret (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

| Sem: V                                                                | Total Hours Distribution per week |                                                                               |          |                      |    |                          |  |
|-----------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------|----------|----------------------|----|--------------------------|--|
| Total Credit: 3                                                       | Lecture (L): 03<br>Hrs            | • • • • • • • • • • • • • • • • • • • •                                       |          |                      |    |                          |  |
| Subject Code                                                          | BTCVE506T                         | BTCVE506T Name of Subject: Climate Change and its Mitigation<br>(Elective-II) |          |                      |    |                          |  |
| Examination Scheme                                                    |                                   |                                                                               |          |                      |    |                          |  |
| Inter                                                                 | nal Marks:                        |                                                                               | Marks:   | Minimu<br>Passing Ma |    | Examination<br>Duration: |  |
| 30 Marks                                                              |                                   |                                                                               |          |                      |    |                          |  |
| (15 Marks for sessional examination)<br>(15 Marks for Activity based) |                                   |                                                                               | 70 Marks | 45 Mark              | KS | 3 Hours                  |  |

| Course   | Objective                                                                         |
|----------|-----------------------------------------------------------------------------------|
| 1        | Students should be able to get knowledge about Climate system, its changes and    |
| 1        | causes                                                                            |
| 2        | Students should able to learn about Green house gases and its chemistry, sources, |
| <u>_</u> | effects & instruments used for quantification                                     |
| 3        | Students should able to learn about the impacts of global climate change          |
| 4        | Provide the knowledge of clean technology and alternate energy sources            |
| 5        | To introduce the students about the mitigation of climate change                  |

| Course    | Course Outcome                                                                                                                |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| After cor | npletion of syllabus student able to                                                                                          |  |  |  |  |  |
| 1         | To be able to understand the problem of economics of energy – environmental interaction with respect to global climate change |  |  |  |  |  |
| 2         | To be in a position to analysis Green house effect                                                                            |  |  |  |  |  |
| 3         | To be in a position to analyze impact of climate change                                                                       |  |  |  |  |  |
| 4         | To be in a position to understand the clean technology and alternate energy sources                                           |  |  |  |  |  |
| 5         | To demonstrate in producing research/project report on mitigation strategies for global climate change.                       |  |  |  |  |  |

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1   | 2   | 2   | 2   | 2   | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| CO2   | 2   | 2   | 2   | 2   | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| CO3   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| CO4   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 2    | 2    | 2    |
| C05   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 1    | 2    | 2    |
| AVG   | 2   | 2   | 2   | 1.4 | 1   | -   | -   | -   | 1   | 1.4  | 2    | 2    |

1 Low

3 High

### SYLLABUS

2 Medium

| Details of Topic                                                                                                                                                                                                                           | H                              | ours            | Mapped with<br>CO Number    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-----------------------------|
| •                                                                                                                                                                                                                                          | L                              | T/A             | CO                          |
| Introduction to Climate Change; History and Trends of Climate                                                                                                                                                                              | 02                             |                 |                             |
| Atmosphere – weather and Climate                                                                                                                                                                                                           | 01                             |                 |                             |
| Causes of global and regional climate change                                                                                                                                                                                               | 01                             |                 | 1                           |
| climate parameters – Temperature, Rainfall, Humidity                                                                                                                                                                                       | 01                             |                 | 1                           |
| Wind – Global ocean circulation and its effect                                                                                                                                                                                             | 01                             |                 |                             |
| Carbon cycle                                                                                                                                                                                                                               | 01                             |                 |                             |
|                                                                                                                                                                                                                                            | 07                             |                 |                             |
|                                                                                                                                                                                                                                            |                                |                 |                             |
| Unit No.2 Greenhouse Gases Details of Topic                                                                                                                                                                                                |                                | ment of<br>ours | Mapped<br>with CO<br>Number |
|                                                                                                                                                                                                                                            |                                |                 | with CO                     |
|                                                                                                                                                                                                                                            | Н                              | ours            | with CO<br>Number           |
| Details of Topic                                                                                                                                                                                                                           | H                              | ours            | with CO<br>Number           |
| Details of Topic<br>Introduction and effect of Carbon dioxide, methane, nitrous oxide,                                                                                                                                                     | H                              | ours            | with CO<br>Number           |
| Details of Topic<br>Introduction and effect of Carbon dioxide, methane, nitrous oxide,<br>water vapor, ozone and chlorofluorocarbons                                                                                                       | H<br>L<br>02                   | ours            | with CO<br>Number           |
| Details of Topic<br>Introduction and effect of Carbon dioxide, methane, nitrous oxide,<br>water vapor, ozone and chlorofluorocarbons<br>Chemistry of greenhouse gases                                                                      | H<br>L<br>02<br>01             | ours            | with CO<br>Number<br>CO     |
| Details of Topic<br>Introduction and effect of Carbon dioxide, methane, nitrous oxide,<br>water vapor, ozone and chlorofluorocarbons<br>Chemistry of greenhouse gases<br>Sources and sinks, their cycle in atmosphere                      | H<br>L<br>02<br>01<br>01       | ours            | with CO<br>Number<br>CO     |
| Details of Topic<br>Introduction and effect of Carbon dioxide, methane, nitrous oxide,<br>water vapor, ozone and chlorofluorocarbons<br>Chemistry of greenhouse gases<br>Sources and sinks, their cycle in atmosphere<br>Radiative forcing | H<br>L<br>02<br>01<br>01<br>01 | ours            | with CO<br>Number<br>CO     |

| Details of Topic                                                                                          |    | ment of<br>ours | Mapped<br>with CO<br>Number       |
|-----------------------------------------------------------------------------------------------------------|----|-----------------|-----------------------------------|
|                                                                                                           | L  | T/A             | CO                                |
| Impacts of Climate Change on various sectors – Agriculture, Forestry                                      | 02 |                 |                                   |
| Methods and Scenarios, changes in agricultural production                                                 | 02 |                 |                                   |
| Impact on Human Health, Industry and society                                                              | 01 |                 | 3                                 |
| Spread of epidemics and Risk of Irreversible Changes.                                                     | 01 |                 |                                   |
| Traditional practices to cope with climate change impacts                                                 | 01 |                 |                                   |
|                                                                                                           | 07 |                 |                                   |
| Unit No.4 Waste to Energy, Clean Technologies and Greener Fuels                                           |    |                 |                                   |
| Details of Topic :                                                                                        |    | ment of<br>ours | Mapped<br>with CO<br>Number<br>CO |
| Later duction to MSW & Dis master Dismodial Inductrial maste                                              | 02 | 1/A             | tu                                |
| Introduction to MSW & Bio waste, Biomedical, Industrial waste,<br>International and Regional cooperation. | 02 |                 |                                   |
| Alternate Energy: Hydrogen, CBS, Bio-fuels, Solar Energy, Wind,<br>Hydroelectric Power                    | 02 |                 |                                   |
| Examples of future Clean Technologies, Biodiesel, Natural Compost,<br>Eco- Friendly Plastic               | 02 |                 | 4                                 |
| Study of waste to energy projects                                                                         | 01 |                 |                                   |
|                                                                                                           | 07 |                 |                                   |
| Unit No.5 Climate Change Mitigation                                                                       |    | 11              |                                   |
| Details of Topic                                                                                          | Н  | ment of<br>ours | Mapped<br>with CO<br>Number       |
|                                                                                                           | L  | T/A             | CO                                |
| Climate change response measures: definition and evolution                                                | 02 |                 |                                   |
| Introduction to mitigation of GHGs and stabilization scenario                                             | 01 |                 |                                   |
| characteristics of mitigation in regional and national context                                            | 01 |                 | 5                                 |
| mainstreaming climate change in development agenda                                                        | 01 |                 | e                                 |
| short-term mitigation options Role of fossil fuels in climate change                                      | 01 |                 |                                   |
| Role of Governments, industries, and individuals                                                          | 01 | 4               |                                   |
|                                                                                                           | 07 |                 |                                   |

|              | References                                        |                                                |                               |         |              |                    |                   |  |
|--------------|---------------------------------------------------|------------------------------------------------|-------------------------------|---------|--------------|--------------------|-------------------|--|
| Applicable   | Name of Book                                      | Name of Author                                 | Name of Publisher             | Edition | Category     |                    |                   |  |
| for Unit No. |                                                   |                                                |                               |         | Text<br>Book | Researc<br>h paper | Reference<br>book |  |
| 1            | Essentials of<br>the Earth's<br>Climate<br>System | Roger G.<br>Barry &<br>Eileen A.<br>Hall-McKim | Cambridge<br>University Press | 1st     | Text<br>Book |                    |                   |  |
| 2,3          | Climate<br>Change and<br>Greenhouse               | Pratap<br>Bhattachary<br>ya(Author),S          | CRC Press                     | 1st     | Text<br>Book |                    |                   |  |

| 2,3,4 | Gases<br>Emissions<br>Global Climate                                                | ushmitaMun<br>da&Pradeep<br>Kumar Dash<br>Suruchi                        | Elsevier                                                  | 1st  | Text         |  |
|-------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|------|--------------|--|
| _,_,, | Change                                                                              | Singh,<br>Pardeep<br>Singh, S.<br>Rangabhashi<br>yam, K.K.<br>Srivastava |                                                           |      | Book         |  |
| 1,2,3 | Implementing<br>the climate<br>regime                                               | Jon Hovi,<br>Olav Stokke<br>and<br>GeirUlfstein                          | International<br>compliance,<br>Earthscan                 | 2005 | Text<br>Book |  |
| 5     | Energy<br>Systems and<br>Sustainability:<br>Power<br>for a<br>Sustainable<br>Future | G Boylr, B<br>Everest, J<br>Ramage                                       | Oxford                                                    | 2003 | Text<br>Book |  |
| 6     | Climate<br>change and it's<br>control                                               | Dr.<br>R.N.Patil,<br>Dr. R.M.<br>Dhoble,<br>Dr. A. M.<br>Bhamburkar      | Book Rivers<br>Publication<br>ISBN: 978-93-<br>5515-329-6 | 2022 | Text<br>Book |  |

| List of Code/Handbook      |                                                                                                                                |                 |                        |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|--|--|
| Applicable<br>for Unit No. | Title of Code                                                                                                                  | Type of<br>code | Year of<br>Publication |  |  |
| 1,2                        | Climate change and carbon markets : a handbook of<br>emission reduction mechanisms, Earthscan by F.<br>Yamin                   |                 | 2005.                  |  |  |
| 1,2,3,4                    | Handbook of Climate Change and India by Navroz<br>K. Dubash                                                                    |                 | 2011                   |  |  |
| 2,3,5                      | Handbook of Climate Change Management by<br>Walter Leal Filho, Johannes M.<br>Luetz&Dr.DesalegnYayehAyal published by Springer |                 | 2021                   |  |  |

| Applicable<br>for Unit No. | Website address                                                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2,3                      | Climate Change 2007: Impacts, Adaptation and Vulnerability, Summary for Policymakers, IPCC. Available at: http://www.ipcc.ch/SPM13apr07.pdf |
| 4,5                        | Climate Change 2007: Mitigation of Climate Change, Summary for Policymakers, IPCC. Available at: http://www.ipcc.ch/SPM040507.pdf           |
| 1,2,3                      | Climate Change, The Physical Science Basis, IPCC. Available at: <u>http://ipccwg1</u> .<br>ucar.edu/wg1/wg1-report.html                     |



America (Dr. A.N. Dashade) Bos Member

2 20 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

## RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B.TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

| Sem: V                                | Total Hours Distribution per week |                                                       |                          |  |  |  |  |
|---------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------|--|--|--|--|
| Total Credit: 3                       | Lecture : 3 Hours                 | Tutorial//Activity (T/A): 0 Hrs                       | Practical (P): 0 Hrs     |  |  |  |  |
| Subject Code:-                        | BTCVE506T                         | Subject: - Advanced Concrete Technology (Elective-II) |                          |  |  |  |  |
|                                       | Examination Scheme                |                                                       |                          |  |  |  |  |
|                                       |                                   |                                                       |                          |  |  |  |  |
| Internal Mark                         | s- University                     | Minimum Passing Marks:                                | Examination<br>Duration: |  |  |  |  |
| 30 Marks                              |                                   |                                                       |                          |  |  |  |  |
| (l5marks. for session<br>Examination) | al 70 Marks                       | 45 Marks                                              | 3 Hours                  |  |  |  |  |
| (15 Marks for Activ<br>based)         | rity                              |                                                       |                          |  |  |  |  |

| Course | e Objectives                                                                                                                                      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | To know different types of cement as per their properties for different field applications, properties of Aggregates and Admixture                |
| 2      | To understand the knowledge of Special Concrete To know tests on concrete in plastic and hardened stage as well as behavior of concrete structure |
| 3      | To understand Design economic concrete mix proportion for different exposure conditions and intended purpose.                                     |
| 4      | To understand the behavior and strength of concrete structure.                                                                                    |
| 5      | To understand the concept of durability and testing of concrete                                                                                   |

| Course | Outcomes                                                                                                                                                                                  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| After  | After completion of syllabus, students would be able to                                                                                                                                   |  |  |  |  |  |  |
| 1      | Think logically for development Concrete technology<br>application in field of Civil Engineering                                                                                          |  |  |  |  |  |  |
| 2      | Differentiate special concrete from conventional concrete Gain an experience in the implementation of Concrete Materials on Engineering concepts which are applied on Construction Fields |  |  |  |  |  |  |
| 3      | Understand the process of mix design of concrete.                                                                                                                                         |  |  |  |  |  |  |
| 4      | Gain an experience in the implementation of Concrete Materials on                                                                                                                         |  |  |  |  |  |  |
|        | Engineering concepts which are applied on Construction Fields.                                                                                                                            |  |  |  |  |  |  |
| 5      | To Understand the various factors affecting the concrete and Advanced Non-<br>Destructive Testing Methods.                                                                                |  |  |  |  |  |  |

| MAPPING | OF CO | WITH PO |
|---------|-------|---------|
|---------|-------|---------|

| CO/ P0 | PO1 | PO2 | PO3  | PO4  | PO5 | PO6 | PO7 | PO8  | PO9 | PO10 | PO11 | PO12 |
|--------|-----|-----|------|------|-----|-----|-----|------|-----|------|------|------|
| C 01   | 2   | 3   | 2    | -    | -   | 1   | 1   | 1    | 1   | -    | -    | 2    |
| C 02   | 2   | 2   | 2    | 2    | -   | 1   | 1   | 1    | 1   | 1    | 2    | 2    |
| C 03   | 3   | 3   | 2    | 2    | 1   | 1   | 1   | 1    | 2   | 1    | 1    | 2    |
| C 04   | 3   | 3   | 2    | 1    | -   | 1   | 1   |      | -   |      | -    | 2    |
| CO5    | 1   | 2   | 2    | -    | -   | -   |     | -    | -   | -    | -    | 2    |
| AVG.   | 2.2 | 2.6 | 2.00 | 1.00 | 0.2 | 0.8 | 0.8 | 0.75 | 1   | 0.5  | 0.75 | 2.00 |

1 Low 2 Medium

3 High

| Details of Topic                                                                                                                                                                                                                                              |    | ment<br>:s | Mapped<br>with CO<br>Number |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|-----------------------------|--|
|                                                                                                                                                                                                                                                               | L  | T/A        | со                          |  |
| UNIT NO.1 INTRODUCTION TO CONCRETE                                                                                                                                                                                                                            |    |            |                             |  |
| Historical background, composition of concrete, general note on strength mechanism, recent practice and future trends                                                                                                                                         | 01 |            | 1                           |  |
| <b>Cement</b> - Chemical composition, hydration, heat of hydration, hydrated structure, various types of cement, grades of cement, testing, Hydration Process and Hydrated Cement Paste of blended cement, of cement as per Indian standard.                  | 03 |            | 1                           |  |
| <b>Aggregates</b> - Utility in concrete, classification, effect of geometry & texture, strength, mechanical properties, moisture content, water absorption, bulking of sand, deleterious substances, sieve analysis, various grading and grading requirements | 03 |            | 1                           |  |
| Water - General Requirements & limiting values of impurities                                                                                                                                                                                                  | 01 |            | 1                           |  |
|                                                                                                                                                                                                                                                               | 08 |            |                             |  |
| UNIT NO.2 SPECIAL CONCRETE AND CONCRETING<br>TECHNIQUES                                                                                                                                                                                                       |    |            |                             |  |
| <ul> <li>a)Concrete with difference cementatious materials: fly ash, GGBS,</li> <li>Silica fume.</li> <li>b) Concrete with different Aggregates: No fines, high weight, gap</li> <li>graded, Recycled Aggregate,Auto clave aerated concrete.</li> </ul>       | 03 |            | 2                           |  |
| <ul> <li>c) Modified property: high density, high performance, ultra rapid hardening concrete,</li> <li>transportation concrete, Fiber reinforcement concrete.</li> <li>d) Techniques: RMC, Underwater concrete, Shot crete, nano concrete.</li> </ul>        | 03 |            | 2                           |  |
|                                                                                                                                                                                                                                                               | 06 |            |                             |  |

| UNIT NO.3 DESIGN OF CONCRETE                                                                                                                 |     |   |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Concept of Design of concrete, Quality control (field and statistical)                                                                       | 02  | 3 |
| Indian Standard Method, Comparison with                                                                                                      |     |   |
| British and .American Method of Mix Design. Acceptance criteria                                                                              |     |   |
| Design of High Strength Concrete Mixes, Design of Light Weight                                                                               | 05  | 3 |
| Aggregate Concrete Mixes, Design of Fly Ash                                                                                                  |     |   |
| Cement Concrete Mixes, Design of High Density Concrete Mixes,                                                                                |     |   |
| Standards, Specifications and Code of Practice.                                                                                              |     |   |
|                                                                                                                                              | 07  |   |
|                                                                                                                                              |     |   |
| UNIT NO.4 BEHAVIOR AND STRENGTH OF CONCRETE                                                                                                  |     |   |
| Failure modes in concrete, type deformation stress strain relation                                                                           | 04  | 4 |
| and modulus of elasticity,                                                                                                                   |     |   |
| Shrinkage cause, Factors Affecting and control, creep, causes,                                                                               |     |   |
| Factores influencing and effects. Effects of temperature.                                                                                    |     |   |
| Compressive strength, Tensile strength, Fatigue strength, and impact                                                                         |     |   |
| strength, Factors influencing strength of concrete                                                                                           | 03  | 4 |
| strength, I detors influencing strength of coherete                                                                                          | ~ - |   |
|                                                                                                                                              | 07  |   |
| UNIT NO.5 DURABILITY AND TESTING OF                                                                                                          |     |   |
| CONCRETE                                                                                                                                     |     |   |
|                                                                                                                                              |     |   |
| Water As An Agent Of Deterioration, Permeability Of Concrete,<br>Classification of Causes of Concrete Deterioration, Deterioration By        | 04  | 5 |
|                                                                                                                                              |     |   |
| Surface Wear/Abrasion, Freezing And Thawing of Concrete, Alkali-<br>Aggregate Reaction (Alkali-Silica Reaction / Alkali-Carbonate Reaction), |     |   |
| Deterioration By Fire, Guide To Durable Concrete                                                                                             |     |   |
| Advanced Non-Destructive Testing Methods: Ground Penetration Radar,                                                                          |     |   |
| Probe Penetration, Pull Out Test, Break off Maturity Method, Stress Wave                                                                     | 04  | 5 |
| Prorogation Method, Electrical/Magnetic Methods, Nuclear Methods And                                                                         |     |   |
| Infrared Thermograph, Core Test                                                                                                              |     |   |
|                                                                                                                                              | 08  |   |
|                                                                                                                                              |     |   |

| References   |             |            |             |         |              |                   |                   |  |
|--------------|-------------|------------|-------------|---------|--------------|-------------------|-------------------|--|
| Applicable   | Name of     | Name of    | Name of     | Edition |              | Category          | y                 |  |
| for Unit No. | Book        | Author     | Publisher   |         | Text<br>Book | Research<br>paper | Reference<br>book |  |
| 1&2          | Concrete    | MS Shetty; | S.Chand     |         | Text         |                   |                   |  |
|              | Technology  |            | Publication |         | Book         |                   |                   |  |
|              |             |            | New Delhi   |         |              |                   |                   |  |
| 3            | Concrete    | PKumar     | Indian      |         | Text         |                   |                   |  |
|              | Technology  | Mehta,     | Concrete    |         | Book         |                   |                   |  |
|              |             |            | Institute   |         |              |                   |                   |  |
| 4&5          | Properties  | AM.Neville | Pearson     |         | Text         |                   |                   |  |
|              | Of Concrete |            | Education   |         | Book         |                   |                   |  |
| 3            | Concrete    | ML         | Tata McGraw |         | Text         |                   |                   |  |
|              | Technology  | Gambhir;   | Hill        |         | Book         |                   |                   |  |

| 3 | Concrete mix<br>design for<br>flyash and<br>superplasticiz<br>er | Kishore<br>kaushal | ICI bulletin | Apr-<br>june<br>1997 | Researc<br>hpaper |
|---|------------------------------------------------------------------|--------------------|--------------|----------------------|-------------------|
|---|------------------------------------------------------------------|--------------------|--------------|----------------------|-------------------|

|                               | List of<br>Code/Hand |                             |                        |
|-------------------------------|----------------------|-----------------------------|------------------------|
| Applicable<br>for Unit<br>No. | Title of<br>Code     | Type of code                | Year of<br>Publication |
| 2                             | IS 269-<br>2013      |                             | 2013                   |
|                               | IS 516-<br>1959      |                             | 1959                   |
| 2                             | IS 1786-<br>1985     |                             |                        |
| 4                             | IS 3812<br>part 1    | Specification<br>of fly ash |                        |
| 3                             | IS 10262<br>- 2009   |                             | 2009                   |

Censes G. Ronze

406 (Dr. A.N. Dashade)

Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

#### It • f

#### RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

| Sem: V                              | Total Hours Distribution per week                                     |                                                              |             |                |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------|----------------|--|--|--|
| Total Credit: 03                    | Lecture (L): 3 HrsTutorial/Activity (T/A): 0 Hr.Practical (P): 0 Hrs. |                                                              |             |                |  |  |  |
| Subject Code                        | BTCVE506T                                                             | Name of Subject: Flood Control and Drainage<br>(Elective-II) |             |                |  |  |  |
|                                     | Examination Scheme                                                    |                                                              |             |                |  |  |  |
| Intern                              | al Marks:                                                             | University Marks:                                            | Minimun     | n Examination  |  |  |  |
|                                     |                                                                       |                                                              | Passing Mar | rks: Duration: |  |  |  |
| 30                                  | Marks                                                                 |                                                              |             |                |  |  |  |
| (15marks for sessional Examination) |                                                                       | 70 Marks                                                     | 45 Marks    | s 3 Hours      |  |  |  |
| (15 Marks for                       | r Activity based)                                                     |                                                              |             |                |  |  |  |

| Course                               | Course Objective                                                                   |  |  |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| This course will enable students to: |                                                                                    |  |  |  |  |  |  |  |
| 1                                    | Understand the Concept of Flood, its effect and Causes.                            |  |  |  |  |  |  |  |
| 2                                    | Understand various methods of Flood Mitigation                                     |  |  |  |  |  |  |  |
| 3                                    | Understand clearly flood routine and its effect in flood management and control    |  |  |  |  |  |  |  |
| 4                                    | Understand the Problems of Drainage system in urbanization and apply the knowledge |  |  |  |  |  |  |  |
|                                      | in operation and maintenance of Urban drainage system.                             |  |  |  |  |  |  |  |
| 5                                    | Familiarize with the concepts of systems for drainage of irrigation lands.         |  |  |  |  |  |  |  |

| Course   | Course Outcome                                                                     |  |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| After St | After Studying this course, Students will be able to:                              |  |  |  |  |  |  |  |
| 1        | Understand the role and responsibility of engineers in Flood Mitigation.           |  |  |  |  |  |  |  |
| 2        | Understand the role and responsibility of engineers in Estimation of Design Flood  |  |  |  |  |  |  |  |
| 3        | Learn and apply the knowledge of GIS, remote Sensing in Natural Hazard Mitigation. |  |  |  |  |  |  |  |
| 4        | Apply the Concept in Operation and Maintenance of Urban Drainage System.           |  |  |  |  |  |  |  |
| 5        | Apply the knowledge of pattern of Drainage system at Irrigation area.              |  |  |  |  |  |  |  |

# MAPPING OF CO WITH PO

| CO/PO             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| BECVE506<br>T CO1 | 3   | 2   | 2   |     |     |     |     |     |     |      |      | 2    |
| BECVE506<br>T CO2 | 3   | 2   | 2   | 2   |     |     |     |     |     |      |      | 2    |
| BECVE506<br>T CO3 | 3   | 2   | 3   |     |     |     |     |     |     |      |      | 2    |
| BECVE506<br>T CO4 | 3   | 2   | 3   |     |     |     |     |     |     |      |      | 2    |
| BECVE506<br>T CO5 | 3   | 2   | 3   |     |     |     |     |     |     |      |      | 2    |

1 Low

2 Medium

3 High

### SYLLABUS

| Unit No.1 Flood Engineering                                                                                                                                                               |       |                      |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-----------------------------|
| Details of Topic                                                                                                                                                                          |       | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                                                                                                                                                           | L     | T/A                  | CO                          |
| Flood Engineering:                                                                                                                                                                        | 07    |                      | 1                           |
| General:                                                                                                                                                                                  |       |                      |                             |
| Introduction, Basics of floods, Natural and man-made floods, Flows in                                                                                                                     |       |                      |                             |
| catchments, Causes of flooding, Environmental and economic losses,                                                                                                                        |       |                      |                             |
| Flood control structures.                                                                                                                                                                 |       |                      |                             |
| FLOOD HAZARD MITIGATION: Flood management measures, Flood                                                                                                                                 |       |                      |                             |
| control strategies.                                                                                                                                                                       |       |                      |                             |
|                                                                                                                                                                                           | 07    |                      |                             |
| Unit No.2 ESTIMATION OF DESIGN FLOOD: & FLOOD ROUTING THRO<br>CHANNELS                                                                                                                    | UGH F | RESERV               | OIRS AND                    |
|                                                                                                                                                                                           |       | otment               | Mapped                      |
| Details of Topic                                                                                                                                                                          |       | of<br>ours           | with CO<br>Number           |
|                                                                                                                                                                                           | L     | T/A                  | CO                          |
| ESTIMATION OF DESIGN FLOOD:                                                                                                                                                               | 08    |                      | 2                           |
| Introduction, Methods of design flood computations: Observation of Highest<br>Flood, Empirical flood formulae, Flood frequency studies- Gumbel's method–<br>Design flood and design storm |       |                      |                             |

| ISD method- Modified Pulse method.       08          Flood routing through channels – Muskingum method.       08          Unit No.3 Risk Management         Details of Topic       Allotment       I       T/A       CO         Risk Management:       Risk assessment, Risk reduction and management, Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management       07       3         Unit No.4 Drainage Engineering       07       I       Image: Comparison of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management.       Mapped with CO Number         Details of Topic       07       I       I         Datails of Topic       07       I       I         Unit No.4 Drainage Problems in Different Climates: Urbanisation - Its effects and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (FLOOD ROUTING THROUGH RESERVOIRS AND CHANNELS                                                                     |      |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|--------|--------|
| Flood routing through channels – Muskingum method.       08       Image: construct the second                   | Flood routing through reservoirs—general, basic principles of flood routing                                        |      |        |        |
| Image: constraint of the second state state of the second state state of the second state state and unsteady state approaches in the second state state state state state state approaches in the second state state state state approaches in the second state state state state state state approaches in the second state approaches in the second state state approaches in the second state state and unsteady state approaches in the second state | ISD method- Modified Pulse method.                                                                                 |      |        |        |
| Image: constraint of the second state state of the second state state of the second state state and unsteady state approaches in the second state state state state state state approaches in the second state state state state approaches in the second state state state state state state approaches in the second state approaches in the second state state approaches in the second state state and unsteady state approaches in the second state | Flood routing through channels – Muskingum method.                                                                 |      |        |        |
| Unit No.3 Risk Management         Mapped with CO         Details of Topic       Mapped with CO         Risk Management: Risk assessment, Risk reduction and management, Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management       07       3         Optimize       Allotment of Mapped with CO         Unit No.4 Drainage Engineering       Mapped of Information Technology in natural hazard         Details of Topic       Allotment of With CO         Details of Topic       Allotment of With CO         Details of Topic       Mapped with CO         Details of Topic       Allotment of With CO         Details of Topic       Allotment of With CO         Details of Topic       Of Tota       Value         Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |      |        |        |
| Details of TopicAllotternt<br>of<br>HoursMapped<br>with CO<br>NumberLT/ACORisk Management:Risk assessment, Risk reduction and management,<br>Advanced Warning Systems:073Advanced Warning Systems:Global positioning systems, Applications of<br>remote sensing and GIS, Role of Information Technology in natural hazard<br>mitigation management073Details of Topic07VVUnit No.4 Drainage EngineeringAllotternt<br>of<br>HoursMapped<br>with CO<br>NumberDetails of Topic $17/A$ CODrainage Engineering:<br>L074Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.074Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.074Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,071Details of Topic $07$ $07$ $07$ $07$ $07$ Unit No.5 Patterns of drainage system $07$ $07$ $07$ $07$ Details of Topic $07$ $07$ $07$ $07$ Details of Topic $07$ $07$ $07$ $07$ Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in $07$ $5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | 08   |        |        |
| Details of Topic $f = 0$<br>Numberwith CO<br>NumberRisk Management:Risk assessment, Risk reduction and management,<br>Advanced Warning Systems: Global positioning systems, Applications of<br>remote sensing and GIS, Role of Information Technology in natural hazard<br>mitigation management073Unit No.4 Drainage Engineering07 $I$ $I$ Details of Topic $II \cup IIII \cup IIII \cup IIII \cup IIIIIIIIIIII$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit No.3 Risk Management                                                                                          |      |        |        |
| Details of Topic       Hours       Number         L       T/A       CO         Risk Management: Risk assessment, Risk reduction and management,       07       3         Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management       07       1         Unit No.4 Drainage Engineering       07       1       1         Details of Topic       Allotment of Hours       Mapped with CO Number       1         Data Drainage Engineering:       1       T/A       CO         Land Drainage Systems: necessity-types-surfaces and subsurface drainage-design considerations.       07       4         Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       07       4         Unit No.5 Patterns of drainage system       07       1       1         Details of Topic       07       1       1         Drainage eriteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in the approaches in the approaches in approaches in the approaches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    | Allo | otment |        |
| L       T/A       CO         Risk Management:       Risk assessment, Risk reduction and management,       07       3         Advanced Warning Systems:       Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management       07       3         Unit No.4 Drainage Engineering       07       07       07         Details of Topic       Allotment of Hours       Mapped with CO Number       Number         L       T/A       CO       Number       4         Data Drainage Engineering:       07       4       4         Land Drainage Systems: necessity-types-surfaces and subsurface drainage-design considerations.       07       4         Land Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       07       4         Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,       07       10         Unit No.5 Patterns of drainage system       07       10       10         Unit No.5 Patterns of drainage system       07       10       10         Details of Topic       07       10       10       10         Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Details of Topic                                                                                                   |      |        |        |
| Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management       07         Unit No.4 Drainage Engineering       07         Details of Topic       Allotment of Hours         Data Drainage Engineering:       Allotment of Hours         Data Drainage Engineering:       Vint No.4 Drainage Engineering:         L       T/A         CO       O7         Jund Drainage Systems: necessity-types-surfaces and subsurface drainage-design considerations.       07         Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       07         Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,       07         Unit No.5 Patterns of drainage system       07       5         Details of Topic       07       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |      |        |        |
| Advanced Warning Systems: Global positioning systems, Applications of<br>remote sensing and GIS, Role of Information Technology in natural hazard<br>mitigation management       07       I         Unit No.4 Drainage Engineering         Mapped<br>with CO         Details of Topic $AII \cup ment$<br>of<br>Hours       Mapped<br>with CO         Data of Topic $AII \cup ment$<br>of<br>Hours       Mapped<br>with CO         Drainage Engineering:       07       4         Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.       07       4         Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.       07       4         Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning. Cleansing of sewers and drains, repair options,       07       1         Unit No.5 Patterns of drainage system         Details of Topic $II = II/A$ CO         Patients of drainage system-         Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in $II = II/A$ CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Risk Management:</b> Risk assessment. Risk reduction and management.                                            | 07   |        | 3      |
| remote sensing and GIS, Role of Information Technology in natural hazard<br>mitigation management $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |      |        |        |
| mitigation management     07       Unit No.4 Drainage Engineering       Details of Topic       Details of Topic       Image Engineering:       Land Drainage Engineering:       Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations.       Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,       Unit No.5 Patterns of drainage system       Details of Topic       Image Additionage Systems       Patterns of drainage system-       Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |      |        |        |
| 07       07         Unit No.4 Drainage Engineering         Mapped with CO         Details of Topic       Mapped with CO         L       T/A       CO         Drainage Engineering:       07       4         Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations.       07       4         Land Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       07       4         Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,       07       4         Unit No.5 Patterns of drainage system         Details of Topic       Mapped with CO         Patterns of drainage system-         Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in       07       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |      |        |        |
| Unit No.4 Drainage EngineeringMapped<br>with CO<br>NumberDetails of TopicMapped<br>with CO<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mitigation management                                                                                              |      |        |        |
| Details of Topic       Allotment<br>of<br>Hours       Mapped<br>with CO<br>Number         L       T/A       CO         Drainage Engineering:       07       4         Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.       07       4         Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.       07       4         Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,       07       4         Unit No.5 Patterns of drainage system       07       07       5         Details of Topic       I       I/A       CO         Patterns of drainage system-<br>Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in       07       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    | 07   |        |        |
| Details of Topic       of<br>Hours       with CO<br>Number         L       T/A       CO         Drainage Engineering:       07       4         Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.       07       4         Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.       07       4         Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,       07       07         Unit No.5 Patterns of drainage system       07       07       10         Details of Topic $\frac{10}{Number}$ $\frac{Mapped}{With CO}$<br>Number         Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in       07       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit No.4 Drainage Engineering                                                                                     |      |        |        |
| Details of Topic         Hours         Number           L         T/A         CO           Drainage Engineering:         07         4           Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.         07         4           Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.         07         4           Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,         07         4           Unit No.5 Patterns of drainage system         07         1         1           Details of Topic $\frac{All \cup ment}{Mapped}$<br>with CO<br>Number         Mapped<br>of the Urs         Mapped<br>with CO<br>Number           Data for the Drainage system-<br>patinage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in         07         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    | Allo | otment |        |
| LT/ACODrainage Engineering:074Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.074Introduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.14Operation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,076Unit No.5 Patterns of drainage system071Details of TopicAllotment<br>of<br>HoursMapped<br>with CO<br>NumberDrainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Details of Topic                                                                                                   |      |        |        |
| Dramage Engineering:IILand Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.IIIntroduction to Drainage Problems in Different Climates: Urbanisation - Its<br>effects and consequences for drainage.IIOperation and Maintenance of Urban Drainage Systems: Maintenance<br>requirements and planning, Cleansing of sewers and drains, repair options,07IUnit No.5 Patterns of drainage system07IMapped<br>with CO<br>NumberDetails of TopicIT/ACOPatterns of drainage system-<br>Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |      |        |        |
| design considerations.       Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.       Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.         Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,       07         Unit No.5 Patterns of drainage system       07       07         Details of Topic       Allotment of with CO Number       Mapped with CO Number         L       T/A       CO         Patterns of drainage system-       07       5         Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in       07       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drainage Engineering:                                                                                              | 07   |        | 4      |
| effects and consequences for drainage.Image: Clean brainage Systems: Maintenance requirements and planning, Clean brainage Systems: Maintenance requirements and planning, Clean brainage Systems: Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Clean brainage system07Image: Mapped with COUnit No.5 Patterns of drainage systemDetails of Topic $Allorment of flow with CONumberImage: Clean brainage systemOf Patterns of drainage systemOf TopicImage: Clean brainage systemDetails of TopicOf TopicImage: Clean brainage systemOf TopicDrainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches inImage: Clean brainage system and unsteady state approaches in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Land Drainage systems: necessity-types-surfaces and subsurface drainage-<br>design considerations.                 |      |        |        |
| requirements and planning, Cleansing of sewers and drains, repair options,I0707Unit No.5 Patterns of drainage systemDetails of TopicDetails of Topic $Allotment of Mapped With CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches inI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. |      |        |        |
| requirements and planning, Cleansing of sewers and drains, repair options,I0707Unit No.5 Patterns of drainage systemDetails of TopicDetails of Topic $Allotment of Mapped With CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches inI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Operation and Maintenance of Urban Drainage Systems: Maintenance                                                   |      |        |        |
| Unit No.5 Patterns of drainage systemAllotment<br>of<br>NumberMapped<br>with CO<br>NumberDetails of Topic $I = I = I = I = I = I = I = I = I = I =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |      |        |        |
| Details of Topic $Allotment of with CO Number$ Mapped with CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches inI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | 07   |        |        |
| Details of TopicAllotment<br>of<br>HoursMapped<br>with CO<br>Number $L$ T/ACOPatterns of drainage system-<br>Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |      |        |        |
| Details of Topic $of \\ H \cup urs$ with CO<br>NumberLT/ACOPatterns of drainage system-<br>Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit No.5 Patterns of drainage system                                                                              |      |        |        |
| Details of Topic     Hours     Number       L     T/A     CO       Patterns of drainage system-     07     5       Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                    |      |        |        |
| Patterns of drainage system-       07       5         Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in       607       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Details of Topic                                                                                                   | H    | ours   | Number |
| Drainage criteria formulation for off season drainage, crop season drainage,<br>salt drainage- use of steady state and unsteady state approaches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |      | T/A    |        |
| salt drainage- use of steady state and unsteady state approaches in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Patterns of drainage system-                                                                                       | 07   |        | 5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drainage criteria formulation for off season drainage, crop season drainage,                                       |      |        |        |
| formulation criteria for irrigated areaincorporation of intentional and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | salt drainage- use of steady state and unsteady state approaches in                                                |      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | formulation criteria for irrigated areaincorporation of intentional and                                            |      |        |        |

| unavoidable losses |    |  |
|--------------------|----|--|
|                    | 07 |  |

#### **Text Books:**

- 1. S.N.Ghosh, Assitant Professor in Civil Engineering Department, IIT, Kharagpur.
- 2. H M Reghunath, Hydrology, New Age International (P) Limited, Publishers (1987)
- 3. Dr. P. Jayarami Reddy, A text book of Hydrology, Laxmi publications (2005)
- 4. Linsley .R.K, Kohler.M.A & Palhus.J.L, Applied Hydrology, Mc Graw Hill (1949)
- 5. Bhattacharya A K and Michael A M, Land Drainage Principles: Methods and Applications, Konark Publishers Pvt. Ltd., New Delhi, 2003.

# **Reference Book:**

- 1. Centre for Science & Environment, Wrath of Nature: Impact of Environmental Destruction on Floods and Droughts, Centre for Science & Environment, New Delhi.
- Beven, K. and Carling, P., (eds.), Floods: Hydrological, Sedimentological and Geomorphological Implications, British Geomorphological Research Group Symposia Series, Wiley, Chichester, 1989.
- 3. B.H.R.A., Hydraulic Aspects of Floods & Flood Control, B.H.R.A., England, 1983.
- 4. Brown, J.P., Economic Effects of Floods, Springer-Verlag, Berlin, 1972.
- 5. Prasad, P., Famines and Droughts: Survival Strategies, Rawat, Jaipur, 1998.
- 6. A.K. Schwab, K. Eschelbach, David J. Brower, Hazard Mitigation and Preparedness, John Wiley, 2007.
- 7. Gribbin, J.E., 2014, Introduction to Hydraulics and Hydrology with Applications for Storm water Management, Cengage
- 8. Mays, L.W., 2001, Storm water Collection Systems Design Handbook, McGraw Hill
- 9. Butler and Davis, Urban Drainage, 3rd edition, 2010
- 10. Irrigation and Drainage paper 24. Crop water requirement. FAO, Rome, 1977.
- 11. Irrigation and Drainage paper 56. Crop water requirement. FAO, Rome, 1988.

Censes 4: Ronde Dr. A.N. Dashade) (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

#### RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

| Sem: V             |                                                    | Total Hours Distribution per week                                 |                                               |     |                          |  |  |
|--------------------|----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|-----|--------------------------|--|--|
| Total Credit: 3    | Lecture (L): 3Hrs                                  | Tutorial/Activity (7                                              | Tutorial/Activity (T/A): 0 hrs Practical (P): |     |                          |  |  |
| Subject Code       | BTCVE506T                                          | <b>CVE506T</b> Name of Subject: Railway Engineering (Elective-II) |                                               |     |                          |  |  |
| Examination Scheme |                                                    |                                                                   |                                               |     |                          |  |  |
| Intern             | al Marks:                                          | University<br>Marks:                                              | Minim<br>Passing M                            |     | Examination<br>Duration: |  |  |
| (15 Marks for se   | Marks<br>ssional examination)<br>r Activity based) | 70 Marks                                                          | 45 Ma                                         | rks | 3 Hours                  |  |  |

| Course | Objective                                                                                                |
|--------|----------------------------------------------------------------------------------------------------------|
| 1      | Students should be able to explain and describe various terms in railway engineering.                    |
| 2      | Students should be able to explain, discriminate and design various geometric features of railway track. |
| 3      | Students should be able to define and describe the construction and maintenance steps of railway track.  |
| 4      | Understand the influence of railway transportations in the society.                                      |
| 5      | Understand the cooperation, interaction & philosophy of railway safety.                                  |

| Course   | Course Outcome                                                        |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| After co | After completion of syllabus student able to                          |  |  |  |  |  |  |
| 1        | Explain Components of Railway Track, different Railway Gauges         |  |  |  |  |  |  |
| 2        | Design track Gradients as per given requirements                      |  |  |  |  |  |  |
| 3        | Discuss various Types of Track Turnouts                               |  |  |  |  |  |  |
| 4        | Explain Interlocking and modern signal system                         |  |  |  |  |  |  |
| 5        | Describe Surface Defects on Railway Track and Their Remedial Measures |  |  |  |  |  |  |

|                        | MAPPING OF CO WITH FO |         |         |         |         |            |         |         |         |          |           |          |
|------------------------|-----------------------|---------|---------|---------|---------|------------|---------|---------|---------|----------|-----------|----------|
| CO/PO                  | PO<br>1               | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6    | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO1<br>11 | PO<br>12 |
| Subject<br>Code<br>&CO |                       |         |         |         |         |            |         |         |         |          |           |          |
| <b>CO1</b>             | 3                     | 3       |         |         |         |            |         |         |         |          |           |          |
| CO2                    | 3                     | 2       |         |         |         |            |         |         |         |          |           |          |
| CO3                    | 3                     | 3       | 2       |         |         |            |         |         |         |          |           |          |
| CO4                    | 3                     | 3       | 1       |         |         |            |         |         |         |          |           |          |
| CO5                    | 3                     | 2       | 2       | 1       |         |            |         |         |         |          |           |          |
| 1 Low                  |                       |         | 2 Me    | dium    |         | <b>3 H</b> | igh     |         | •       |          |           |          |

#### MAPPING OF CO WITH PO

#### SYLLABUS

| Unit No.1 Railways Terminology |        |                      |                             |
|--------------------------------|--------|----------------------|-----------------------------|
| Details of Topic               | н      | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                | L      | T/A                  | CO                          |
| Railway track                  |        |                      | 1                           |
| Gauge                          |        |                      | 1                           |
| Alignment of railway lines     | - 08   |                      |                             |
| Engineering surveys            | 00     |                      |                             |
| Construction of new lines,     |        |                      |                             |
| Tracks & track stresses        | 08     |                      | 1                           |
|                                |        |                      |                             |
| Unit No.2 Rail Terminology     |        |                      |                             |
| Details of Topic               |        | otment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                | L      | T/A                  | CO                          |
| Rails, sleepers, Ballast       |        |                      | 2                           |
| Subgrade and formation         |        |                      | 2                           |
| Track fittings and fastenings  | - 08   |                      |                             |
| Creep of rails                 |        |                      |                             |
| Geometric design of track      |        |                      | 2                           |
| Curves and super-elevation     |        |                      | 2                           |
|                                | 08     |                      |                             |
| Unit No.3 Points & Crossing    |        |                      |                             |
| Deteile of Torris              | _      | otment<br>of         | Mapped<br>with CO           |
| Details of Topic               | L<br>H | ours<br>T/A          | Number<br>CO                |
| Points and grossings           |        | 1/A                  | $\frac{1}{3}$               |
| Points and crossings           | - 08   |                      | 3                           |
| Track junctions                |        |                      |                             |

| Simple track layouts                                         |       |                     | 3                           |
|--------------------------------------------------------------|-------|---------------------|-----------------------------|
| Rail joints and welding of rails                             |       |                     | 3                           |
| Track maintenance                                            |       |                     |                             |
| Track drainage                                               |       |                     | 3                           |
|                                                              | 08    |                     |                             |
| Unit No.4 Modernization of Railway Track                     |       |                     |                             |
| Details of Topic                                             | Н     | tment<br>of<br>ours | Mapped<br>with CO<br>Number |
|                                                              | L     | T/A                 | CO                          |
| Modern methods of track maintenance                          |       |                     |                             |
| Rehabilitation of track                                      |       |                     | 4                           |
| Renewal of track<br>Tractive resistance and power            | - 08  |                     |                             |
| Railway stations                                             |       |                     |                             |
| Railway yards                                                |       |                     |                             |
|                                                              | 08    |                     |                             |
| Unit No.5 Signalling & Control system                        |       |                     |                             |
|                                                              | Allo  | tment               | Mapped                      |
|                                                              | of    |                     | with CO                     |
|                                                              |       |                     |                             |
| Details of Topic                                             | Hours |                     | Number                      |
|                                                              | L     | T/A                 | CO                          |
| Railway tunnelling                                           |       |                     | 5                           |
| Signalling                                                   |       |                     |                             |
| Interlocking                                                 | 08    |                     |                             |
| Modern development in railways                               | 0     |                     | 5                           |
| Development of high speed and super high speed railway track |       |                     | 5                           |
| Maintenance of railway tracks for high speed trains          |       |                     | 5                           |
|                                                              |       |                     |                             |

| References                    |                        |                                              |                                              |         |              |                   |                   |  |  |  |
|-------------------------------|------------------------|----------------------------------------------|----------------------------------------------|---------|--------------|-------------------|-------------------|--|--|--|
| Applicable<br>for Unit<br>No. | Name of<br>Book        | Name of<br>Author                            | Name of<br>Publisher                         | Edition | Category     |                   |                   |  |  |  |
|                               |                        |                                              |                                              |         | Text<br>Book | Research<br>paper | Reference<br>book |  |  |  |
| I,II,III,<br>IV&V             | Railway<br>Engineering | Saxena and<br>Arora,<br>Dhanpat Rai&<br>Sons | Dhanpat<br>Rai&<br>Sons                      | Ι       | √            | -                 |                   |  |  |  |
| I,II,III,<br>IV&V             | Railway<br>Engineering | S.C.Rangawala                                | Charotar<br>Publishing<br>House<br>Pvt. Ltd. | Ι       | √            | -                 |                   |  |  |  |

| III | Railway<br>Tracks<br>Engineering | J.S.Mundrey,<br>Tata McGraw-<br>Hill Publishing | Tata<br>McGraw-<br>Hill<br>Publishing | Ι |  | - | V |
|-----|----------------------------------|-------------------------------------------------|---------------------------------------|---|--|---|---|
|-----|----------------------------------|-------------------------------------------------|---------------------------------------|---|--|---|---|

Custos G. Ronde

. Ser ADE (Dr. A.N. Dashade) Bos Member

433 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman